NEVANLINNA THEORY VIA STOCHASTIC CALCULUS

被引:8
作者
ATSUJI, A [1 ]
机构
[1] UNIV TOKYO,DEPT MATH SCI,TOKYO 153,JAPAN
关键词
D O I
10.1006/jfan.1995.1112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Nevanlinna theory using stochastic calculus. We have a defect relation for holomorphic maps in equidimensional cases which includes Carlson and Griffiths' defect relation. The main probabilistic methods used here are some estimates on some increasing processes for Brownian motion and martingales on manifolds. The latter is obtained from Krylov's estimate on stochastic integrals for martingales. (C) 1995 Academic Press, Inc.
引用
收藏
页码:473 / 510
页数:38
相关论文
共 23 条
[1]   EXIT TIMES FOR ELLIPTIC DIFFUSIONS AND BMO [J].
BANUELOS, R ;
OKSENDAL, B .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1987, 30 :273-287
[2]   DEFECT RELATION FOR EQUIDIMENSIONAL HOLOMORPHIC MAPPINGS BETWEEN ALGEBRAIC VARIETIES [J].
CARLSON, J ;
GRIFFITHS, P .
ANNALS OF MATHEMATICS, 1972, 95 (03) :557-+
[3]   MOVING LEMMA FOR TRANSCENDENTAL BEZOUT PROBLEM [J].
CARLSON, JA .
ANNALS OF MATHEMATICS, 1976, 103 (02) :305-330
[4]  
CARNE TK, 1986, P LOND MATH SOC, V52, P349
[5]  
Chavel I., 1984, EIGENVALUES RIEMANNI
[6]   CONVERGENCE OF MARTINGALES ON A RIEMANNIAN MANIFOLD [J].
DARLING, RWR .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (02) :753-763
[7]  
DARLING RWR, SPRINGER LECTURE NOT, V921
[8]  
Davies E.B., 1989, CAMBRIDGE TRACTS MAT, V92
[9]  
Debiard A., 1976, PUBL RES I MATH KYOT, V12, P391
[10]  
EMERY M, 1989, STOCHASTIC CALCULUS