NONUNIQUENESS IN THE ONE-DIMENSIONAL INVERSE SCATTERING PROBLEM

被引:18
作者
AKTOSUN, T
NEWTON, RG
机构
关键词
D O I
10.1088/0266-5611/1/4/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:291 / 300
页数:10
相关论文
共 10 条
[1]   2 DISTINCT LOCAL POTENTIALS WITH NO BOUND-STATES CAN HAVE THE SAME SCATTERING OPERATOR - A NONUNIQUENESS IN INVERSE SPECTRAL TRANSFORMATIONS [J].
ABRAHAM, PB ;
DEFACIO, B ;
MOSES, HE .
PHYSICAL REVIEW LETTERS, 1981, 46 (26) :1657-1659
[2]   NONUNIQUENESS OF THE INVERSE-SCATTERING PROBLEM AND THE PRESENCE OF E=0 BOUND-STATES [J].
BROWNSTEIN, KR .
PHYSICAL REVIEW D, 1982, 25 (10) :2704-2705
[3]   INVERSE SCATTERING ON THE LINE [J].
DEIFT, P ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (02) :121-251
[4]  
Faddeev L., 1964, T MATEM I VA STEKLOV, V73, P314
[5]   EXAMPLE OF 2 DISTINCT POTENTIALS WITHOUT POINT EIGENVALUES WHICH HAVE THE SAME SCATTERING OPERATOR WITH THE REFLECTION COEFFICIENT C(0)=-1 [J].
MOSES, HE .
PHYSICAL REVIEW A, 1983, 27 (04) :2220-2221
[6]  
Newton R.G., 1983, C INVERSE SCATTERING, P1
[7]   INVERSE SCATTERING .1. ONE DIMENSION [J].
NEWTON, RG .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (03) :493-505
[8]   REMARKS ON INVERSE SCATTERING IN ONE DIMENSION [J].
NEWTON, RG .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (10) :2991-2994
[9]   VARIATIONAL-PRINCIPLES FOR INVERSE SCATTERING [J].
NEWTON, RG .
INVERSE PROBLEMS, 1985, 1 (04) :371-380
[10]  
SABATIER PC, 1984, INVERSE PROBLEMS ACO, P82