ASYMPTOTIC THEORY FOR SOLUTIONS IN STATISTICAL ESTIMATION AND STOCHASTIC-PROGRAMMING

被引:121
作者
KING, AJ [1 ]
ROCKAFELLAR, RT [1 ]
机构
[1] UNIV WASHINGTON,DEPT MATH,SEATTLE,WA 98195
关键词
STOCHASTIC PROGRAMS; GENERALIZED EQUATIONS; CONSISTENCY; CENTRAL LIMITS; CONTINGENT DERIVATIVES;
D O I
10.1287/moor.18.1.148
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
New techniques of local sensitivity analysis for nonsmooth generalized equations are applied to the study of sequences of statistical estimates and empirical approximations to solutions of stochastic programs. Consistency is shown to follow from a certain local invertibility property, and asymptotic distributions are derived from a generalized implicit function theorem that characterizes asymptotic behavior in situations where estimates are subjected to constraints and estimation functionals are nonsmooth.
引用
收藏
页码:148 / 162
页数:15
相关论文
共 16 条
[1]   MAXIMUM-LIKELIHOOD ESTIMATION OF PARAMETERS SUBJECT TO RESTRAINTS [J].
AITCHISON, J ;
SILVEY, SD .
ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (03) :813-828
[2]  
Araujo A, 1980, CENTRAL LIMIT THEORE
[3]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[4]   NONSMOOTH ANALYSIS AND FRECHET DIFFERENTIABILITY OF M-FUNCTIONALS [J].
CLARKE, BR .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 73 (02) :197-209
[5]   ASYMPTOTIC-BEHAVIOR OF STATISTICAL ESTIMATORS AND OF OPTIMAL-SOLUTIONS OF STOCHASTIC OPTIMIZATION PROBLEMS [J].
DUPACOVA, J ;
WETS, R .
ANNALS OF STATISTICS, 1988, 16 (04) :1517-1549
[6]  
ERMOLIEV YM, 1989, WP89091 INT I APPL S
[7]   AN ELEMENTARY PROOF OF THE STRONG LAW OF LARGE NUMBERS [J].
ETEMADI, N .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 55 (01) :119-122
[8]  
HUBER PJ, 1967, 5TH P BERK S MATH ST, V1, P221
[9]  
IBRAGIMOV IA, 1981, STATISTICAL ESTIMATI