In EGFR-T17 cells, which express high levels of the epidermal growth factor (EGF) receptor, addition of a saturating dose of EGF (10 nM) leads to an increase in Ins(1,4,5)P3/diacylglycerol and also to cytosolic calcium [Ca2+]i due to both intracellular redistribution and influx from extracellular medium. Pretreatment of cells with cis -unsaturated nonesterified fatty acids such as oleic acid (1 to 100 μM) inhibited EGF-stimulated Ins(1,4,5)P3 generation and Ca2+ release from intracellular stores. Furthermore, such a treatment completely suppress Ca2+ influx in a dose-dependent manner. At doses capable of suppressing such early signals, oleic acid did not alter the process of EGF-mediated internalization of the EGF/EGF-receptor complex, suggesting that [Ca2+]i rise did not mediate receptor internalization. EGF-induced cell proliferation assessed by either thymidine incorporation into DNA, direct cell counting, and microscopic observation was not altered by oleic acid, at doses able to block EGF-mediated early signals. In conclusion, suppression of Ins(1,4,5)P3 generation and [Ca2+]i rises by oleic acid did not alter EGF-receptor internalization nor EGF-induced cell mitosis. Such results suggest that [Ca2+]i rise is not instrumental for EGF-stimulated cell proliferation. © 1993 Academic Press, Inc.