BENDER-WU BRANCH-POINTS IN THE CUBIC OSCILLATOR

被引:65
作者
ALVAREZ, G
机构
[1] Dept. de Fis. Teorica, Complutense Univ., Madrid
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 16期
关键词
D O I
10.1088/0305-4470/28/16/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The analytic continuation of the resonances of the cubic anharmonic oscillator to complex values of the coupling constant is studied with semiclassical and numerical methods. Bender-Wu branch points, at which level crossing occurs, are calculated and labelled by a process of analytic continuation. The different resonances are the values that a single analytic function takes on different sheets of a Riemann surface whose topology is described.
引用
收藏
页码:4589 / 4598
页数:10
相关论文
共 23 条
[1]   QUANTUM-MECHANICS AS CLASSICAL MECHANICS PLUS QUANTUM CORRECTIONS - THE CUBIC ANHARMONIC-OSCILLATOR [J].
ALVAREZ, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (06) :617-624
[2]   TRANSITION FROM CLASSICAL MECHANICS TO QUANTUM-MECHANICS - CHI-4 PERTURBED HARMONIC-OSCILLATOR [J].
ALVAREZ, G ;
GRAFFI, S ;
SILVERSTONE, HJ .
PHYSICAL REVIEW A, 1988, 38 (04) :1687-1696
[3]   LARGE-FIELD BEHAVIOR OF THE LOSURDO-STARK RESONANCES IN ATOMIC-HYDROGEN [J].
ALVAREZ, G ;
SILVERSTONE, HJ .
PHYSICAL REVIEW A, 1994, 50 (06) :4679-4699
[4]   COUPLING-CONSTANT BEHAVIOR OF THE RESONANCES OF THE CUBIC ANHARMONIC-OSCILLATOR [J].
ALVAREZ, G .
PHYSICAL REVIEW A, 1988, 37 (11) :4079-4083
[5]   ANALYTIC PROPERTIES OF BAND FUNCTIONS [J].
AVRON, JE ;
SIMON, B .
ANNALS OF PHYSICS, 1978, 110 (01) :85-101
[6]   BENDER-WU FORMULA AND THE STARK EFFECT IN HYDROGEN [J].
BENASSI, L ;
GRECCHI, V ;
HARRELL, E ;
SIMON, B .
PHYSICAL REVIEW LETTERS, 1979, 42 (11) :704-707
[7]   RESONANCES IN THE STARK-EFFECT AND STRONGLY ASYMPTOTIC APPROXIMANTS [J].
BENASSI, L ;
GRECCHI, V .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1980, 13 (05) :911-930
[8]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&
[9]   NUMERICAL STUDY OF ENERGY-LEVEL CROSSING [J].
BENDER, CM ;
HAPP, HJ ;
SVETITSKY, B .
PHYSICAL REVIEW D, 1974, 9 (08) :2324-2329
[10]   DOUBLE POINTS OF MATHIEUS DIFFERENTIAL EQUATION [J].
BLANCH, G ;
CLEMM, DS .
MATHEMATICS OF COMPUTATION, 1969, 23 (105) :97-&