TENSOR REPRESENTATION OF THE QUANTUM GROUP SLQ(2,C) AND QUANTUM MINKOWSKI SPACE

被引:122
作者
CAROWWATAMURA, U
SCHLIEKER, M
SCHOLL, M
WATAMURA, S
机构
[1] Institut für Theoretische Physik, Universität Karlsruhe, Karlsruhe, D-7500
来源
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS | 1990年 / 48卷 / 01期
关键词
D O I
10.1007/BF01565619
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the structure of the tensor product representation of the quantum group SLq(2,C) by using the 2-dimensional quantum plane as a building block. Two types of 4-dimensional spaces are constructed applying the methods used in twistor theory. We show that the 4-dimensional real representation of SLq(2,C) generates a consistent non-commutative algebra, and thus it provides a quantum deformation of Minkowski space. The transformation of this 4-dimensional space gives the quantum Lorentz group SOq(3, 1). © 1990 Springer-Verlag.
引用
收藏
页码:159 / 165
页数:7
相关论文
共 20 条
  • [1] SOME ASPECTS OF QUANTUM GROUPS AND SUPERGROUPS
    CORRIGAN, E
    FAIRLIE, DB
    FLETCHER, P
    SASAKI, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (04) : 776 - 780
  • [2] DRINFELD VG, 1986, P INT C MATH BERKELE, V1, P798
  • [3] Faddeev L.D., 1989, ALGEBRA ANALIZ, P178
  • [4] INTRODUCTION TO THE YANG-BAXTER EQUATION
    JIMBO, M
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (15): : 3759 - 3777
  • [5] A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION
    JIMBO, M
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) : 63 - 69
  • [6] Manin Y., 1988, QUANTUM GROUPS NONCO
  • [7] Penrose R., 1984, CAMBRIDGE MONOGRAPHS, V1
  • [8] Pusz W., 1989, Reports on Mathematical Physics, V27, P231, DOI 10.1016/0034-4877(89)90006-2
  • [9] RESHETIKHIN NY, 1987, LOMI E1787 PREPR
  • [10] SCHLIEKER M, 1989, KATHEP261989 PREPR