COMPUTING SIMPLE BIFURCATION POINTS USING A MINIMALLY EXTENDED SYSTEM OF NONLINEAR EQUATIONS

被引:23
作者
PONISCH, G
机构
关键词
D O I
10.1007/BF02240195
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:277 / 294
页数:18
相关论文
共 13 条
[1]  
Crandall M.G., 1971, J FUNCT ANAL, V8, P321, DOI DOI 10.1016/0022-1236(71)90015-2
[2]   THE ROLE OF THE TANGENT MAPPING IN ANALYZING BIFURCATION BEHAVIOR [J].
FINK, JP ;
RHEINBOLDT, WC .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1984, 64 (09) :407-412
[3]   CHARACTERIZATION AND COMPUTATION OF GENERALIZED TURNING-POINTS [J].
GRIEWANK, A ;
REDDIEN, GW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (01) :176-185
[4]  
GRIEWANK A, 1983, UNPUB SIAM REV
[5]  
KUBICEK M, 1979, APPL MATH COMPUT, V5, P253, DOI DOI 10.1016/0096-3003(79)90017-1
[6]   A QUADRATICALLY CONVERGENT METHOD FOR COMPUTING SIMPLE SINGULAR ROOTS AND ITS APPLICATION TO DETERMINING SIMPLE BIFURCATION POINTS [J].
MENZEL, R ;
PONISCH, G .
COMPUTING, 1984, 32 (02) :127-138
[7]  
MENZEL R, 1984, INT SERIES NUMERICAL, V70, P310
[8]  
MITTELMANN HD, 1980, ISNM, V54, P1
[9]   THE NUMERICAL TREATMENT OF NON-TRIVIAL BIFURCATION POINTS [J].
MOORE, G .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1980, 2 (06) :441-472
[10]   COMPUTING TURNING-POINTS OF CURVES IMPLICITLY DEFINED BY NON-LINEAR EQUATIONS DEPENDING ON A PARAMETER [J].
PONISCH, G ;
SCHWETLICK, H .
COMPUTING, 1981, 26 (02) :107-121