POISSON EQUATION WITH PERIODIC BOUNDARY-CONDITIONS - MULTIPOLE-EXPANSION SOLUTION

被引:8
作者
OH, Y
BADRALEXE, E
MARKSTEINER, P
FREEMAN, AJ
机构
[1] Department of Physics and Astronomy, Northwestern University, Evanston
来源
PHYSICAL REVIEW B | 1992年 / 46卷 / 08期
关键词
D O I
10.1103/PhysRevB.46.4495
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A multipole-expansion approach is given for solving the Poisson equation with periodic boundary conditions by using the (point-group) symmetry of the unit cell and the evaluation of lattice sums (i.e., the lattice Fourier transform). The accuracy of this approach is checked for a highly anisotropic soluble case as well as for the classical example of Cu. Numerical results for Cu show a drastic decrease of the computational time in comparison with the approach used in the full-potential linearized-augmented-plane-wave method.
引用
收藏
页码:4495 / 4501
页数:7
相关论文
共 22 条
[1]  
Appell P., 1884, ACTA MATH, V4, P313
[2]   EIGENVALUE EQUATION FOR A GENERAL PERIODIC POTENTIAL AND ITS MULTIPOLE EXPANSION SOLUTION [J].
BADRALEXE, E ;
FREEMAN, AJ .
PHYSICAL REVIEW B, 1988, 37 (03) :1067-1084
[3]   CONVERGENCE OF LATTICE SUMS AND MADELUNG CONSTANT [J].
BORWEIN, D ;
BORWEIN, JM ;
TAYLOR, KF .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (11) :2999-3009
[4]  
Bradley C., 2009, MATH THEORY SYMMETRY
[5]  
CALLAWAY J, 1958, PHYS REV, V109, P1541
[6]  
Glasser M. L., 1980, THEORETICAL CHEM ADV, V5, P67
[7]  
GLASSER ML, COMMUNICATION
[8]  
GRADSHTEYN IS, 1980, TABLITSY INTEGRALOV
[9]  
MARKSTEINER P, 1988, B AM PHYS SOC, P354
[10]   INTEGRATION OF POISSONS EQUATION FOR A COMPLEX SYSTEM WITH ARBITRARY GEOMETRY [J].
MORGAN, JVW .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1977, 10 (08) :1181-1202