A GROUP-THEORETIC APPROACH TO THE GEOMETRY OF ELASTIC RINGS

被引:14
作者
DOMOKOS, G
机构
[1] Technical University of Budapest, Budapest
关键词
D O I
10.1007/BF01209022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
All globally possible solutions of a twisted, homogeneous, elastic ring with circular cross section and no external load are characterized by their symmetry groups. The symmetry group of the untwisted, trivial solution is identified as Gamma(S)(t0)=O(2)xZ(2), and symmetry groups for the nontrivial solutions are found among the subgroups of Gamma(S)(t0).
引用
收藏
页码:453 / 478
页数:26
相关论文
共 15 条
[1]  
Calladine CR., 1992, UNDERSTANDING DNA
[2]  
DOMOKOS G, 1990, Z ANGEW MATH MECH, V72, P221
[3]  
DOMOKOS G, 1994, BN1167 U MAR I PHYS
[4]   LARGE ROTATORY OSCILLATIONS OF TRANSVERSELY ISOTROPIC RODS - SPATIOTEMPORAL SYMMETRY-BREAKING BIFURCATION [J].
HEALEY, TJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (04) :1120-1135
[5]  
HEALEY TJ, 1989, ARCH RATION MECH AN, V105, P205, DOI 10.1007/BF00251500
[6]   KNOTTED ELASTIC CURVES IN R3 [J].
LANGER, J ;
SINGER, DA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1984, 30 (DEC) :512-520
[7]   TWIST AND WRITHING IN SHORT CIRCULAR DNAS ACCORDING TO 1ST-ORDER ELASTICITY [J].
LEBRET, M .
BIOPOLYMERS, 1984, 23 (10) :1835-1867
[8]   CONSERVATION-LAWS IN THE DYNAMICS OF RODS [J].
MADDOCKS, JH ;
DICHMANN, DJ .
JOURNAL OF ELASTICITY, 1994, 34 (01) :83-96
[9]  
MADDOCKS JH, 1984, ARCH RATION MECH AN, V85, P311, DOI 10.1007/BF00275737
[10]  
MADDOCKS JH, 1994, COMMUNICATION