PROXIMAL DECOMPOSITION ON THE GRAPH OF A MAXIMAL MONOTONE OPERATOR

被引:36
作者
MAHEY, P
OUALIBOUCH, S
TAO, PD
机构
[1] INST INFORMAT & INTELLIGENCE ARTIFICIELLE,CH-2000 NEUCHATEL,SWITZERLAND
[2] INSA,LMAI,F-76131 MONT ST AIGNAN,FRANCE
关键词
PROXIMAL POINT ALGORITHM; PARTIAL INVERSE; CONVEX PROGRAMMING;
D O I
10.1137/0805023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm to solve: Find (x, y) epsilon A x A perpendicular to such that y epsilon Tx, where A is a subspace and T is a maximal monotone operator. The algorithm is based on the proximal decomposition on the graph of a monotone operator and we show how to recover Spingarn's decomposition method. We give a proof of convergence that does not use the concept of partial inverse and show how to choose a scaling factor to accelerate the convergence in the strongly monotone case. Numerical results performed on quadratic problems confirm the robust behaviour of the algorithm.
引用
收藏
页码:454 / 466
页数:13
相关论文
共 13 条
[1]  
Bertsekas D.P., 1989, PARALLEL DISTRIBUTED
[2]  
Brezis H., 1973, MATH STUDIES, V5
[3]  
Eckstein, 1989, SPLITTING METHODS MO
[4]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[5]  
GOEBEL K, 1990, STUDIES ADV MATH, V28
[6]  
IDRISSI H, 1989, LECT NOTES MATH, V1405, P39
[7]  
LAWRENCE J, 1987, P LOND MATH SOC, V55, P605
[8]   SPLITTING ALGORITHMS FOR THE SUM OF 2 NON-LINEAR OPERATORS [J].
LIONS, PL ;
MERCIER, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (06) :964-979
[9]  
MARTINET B, 1972, THESIS U GRENOBLE