CONSTRUCTIVE HEURISTIC ALGORITHMS FOR THE OPEN SHOP PROBLEM

被引:49
作者
BRASEL, H
TAUTENHAHN, T
WERNER, F
机构
[1] Fakultät für Mathematik, Technische Universität 'Otto von Guericke', Magdeburg, D-39016
关键词
SCHEDULING; OPEN SHOP PROBLEMS; HEURISTIC ALGORITHMS;
D O I
10.1007/BF02243845
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we consider constructive heuristic algorithms for the open shop problem with minimization of the schedule length. By means of investigations of the structure of a feasible solution two types of heuristic algorithms are developed: construction of a rank-minimal schedule by solving successively weighted maximum cardinality matching problems and construction of an approximate schedule by applying insertion techniques combined with beam search. All presented algorithms are tested on benchmark problems from the literature. Our computational results demonstrate the excellent solution quality of our insertion algorithm, especially for greater job and machine numbers. For 29 of 30 benchmark problems with at least 10 jobs and 10 machines we improve the best known values obtained by tabu search.
引用
收藏
页码:95 / 110
页数:16
相关论文
共 12 条
[1]  
Brasel H., 1992, Optimization, V23, P251, DOI 10.1080/02331939208843762
[2]  
BRASEL H, 1989, WISS Z TU MAGDEBURG, V33, P41
[3]  
BRASEL H, 1990, THESIS TU MAGDEBURG
[4]  
CHEN B, 1991, WORST CASE ANAL DENS
[5]  
Glover F., 1990, ORSA Journal on Computing, V2, P4, DOI [10.1287/ijoc.1.3.190, 10.1287/ijoc.2.1.4]
[6]  
GONZALEZ T, 1976, J ACM, V23, P665, DOI 10.1145/321978.321985
[7]  
KLEINAU U, 1991, SOME NEW METHODS SOL
[8]  
LAGEWEG BJ, 1981, BW13881 DEP OP RES R
[9]  
LAWLER EL, 1989, BSR890 DEP OP RES ST
[10]  
TAILLARD E, 1989, ORWP8921