2-DIMENSIONAL TOPOLOGICAL YANG-MILLS THEORY

被引:6
作者
BRODA, B
机构
[1] Institute of Physics, University of Łódź, PL-90-236 Łódź
关键词
D O I
10.1016/0370-2693(90)90343-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Two-dimensional euclidean (topological) quantum Yang-Mills theory on the compact manifold in the Lorentz gauge is analysed in the framework of the covariant path-integral approach. The Nicolai map for the partition function and for the Wilson loop observables is explicitly given. © 1990.
引用
收藏
页码:444 / 449
页数:6
相关论文
共 22 条
[1]  
AREFEVA Y, 1980, THEOR MATH PHYS, V43, P353
[2]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[3]   A NEW CLASS OF TOPOLOGICAL FIELD-THEORIES AND THE RAY-SINGER TORSION [J].
BLAU, M ;
THOMPSON, G .
PHYSICS LETTERS B, 1989, 228 (01) :64-68
[4]  
BLAU M, SISSA3989FM PREPR
[5]  
BLAU M, PARLPHTE8917 PREPR
[6]   EXACT COMPUTATION OF LOOP AVERAGES IN 2-DIMENSIONAL YANG-MILLS THEORY [J].
BRALIC, NE .
PHYSICAL REVIEW D, 1980, 22 (12) :3090-3103
[7]   LATTICE GAUGE-THEORY IN 2 SPACETIME DIMENSIONS [J].
DOSCH, HG ;
MULLER, VF .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1979, 27 (11-1) :547-559
[8]  
GANTMCHER FR, 1959, THEORY MATRICES
[9]   2 DIMENSIONAL YANG-MILLS THEORY VIA STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
GROSS, L ;
KING, C ;
SENGUPTA, A .
ANNALS OF PHYSICS, 1989, 194 (01) :65-112
[10]  
GUADAGNINI E, CERNTH557389 PREPR