AMINO-ACID SUBSTITUTION OF PROTEINS CODED FOR IN MITOCHONDRIAL-DNA DURING MAMMALIAN EVOLUTION

被引:33
作者
ADACHI, J [1 ]
HASEGAWA, M [1 ]
机构
[1] INST STAT MATH, MINATO KU, TOKYO 106, JAPAN
来源
JAPANESE JOURNAL OF GENETICS | 1992年 / 67卷 / 03期
关键词
D O I
10.1266/jjg.67.187
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Three Markov models (Dayhoff, Proportional and Poisson models; Hasegawa et al., 1992a) for amino acid substitution during evolution were used for maximum likelihood analyses of proteins coded for in mitochondrial DNA in estimating a phylogenetic tree among human, bovine and murids (mouse and rat) with chicken as an outgroup. It turned out that Dayhoff model is the most appropriate model among the alternatives in approximating the amino acid substitutions of proteins coded for in mitochondrial DNA. In spite of the presence of the complete sequence data of mitochondrial genomes, we could not resolve the trichotomy among human, bovine and murids, probably because the time length separating two branching events among these three lines was short and because chicken is too distant from mammals to be used as an outgroup. It was suggested that the average substitution rate of amino acids coded for in mitochondrial DNA is lower along the bovine line than those along the human or murid lines. Advantages of amino acid sequence analysis over nucleotide sequence analysis in phylogenetic study were discussed.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 25 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   SEQUENCE AND ORGANIZATION OF THE HUMAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
BANKIER, AT ;
BARRELL, BG ;
DEBRUIJN, MHL ;
COULSON, AR ;
DROUIN, J ;
EPERON, IC ;
NIERLICH, DP ;
ROE, BA ;
SANGER, F ;
SCHREIER, PH ;
SMITH, AJH ;
STADEN, R ;
YOUNG, IG .
NATURE, 1981, 290 (5806) :457-465
[3]   COMPLETE SEQUENCE OF BOVINE MITOCHONDRIAL-DNA - CONSERVED FEATURES OF THE MAMMALIAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
DEBRUIJN, MHL ;
COULSON, AR ;
EPERON, IC ;
SANGER, F ;
YOUNG, IG .
JOURNAL OF MOLECULAR BIOLOGY, 1982, 156 (04) :683-717
[4]   SEQUENCE AND GENE ORGANIZATION OF MOUSE MITOCHONDRIAL-DNA [J].
BIBB, MJ ;
VANETTEN, RA ;
WRIGHT, CT ;
WALBERG, MW ;
CLAYTON, DA .
CELL, 1981, 26 (02) :167-180
[5]   NOVEL FEATURES OF ANIMAL MESSENGER TRANSFER DNA EVOLUTION AS SHOWN BY SEQUENCES OF 2 RAT CYTOCHROME-OXIDASE SUBUNIT-II GENES [J].
BROWN, GG ;
SIMPSON, MV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (10) :3246-3250
[6]  
CANN RL, 1984, GENETICS, V106, P479
[7]  
Dayhoff MO, 1978, ATL PROTEIN SEQ STRU, V5, P345
[8]   EVOLUTIONARY TREES FROM DNA-SEQUENCES - A MAXIMUM-LIKELIHOOD APPROACH [J].
FELSENSTEIN, J .
JOURNAL OF MOLECULAR EVOLUTION, 1981, 17 (06) :368-376
[9]   THE COMPLETE NUCLEOTIDE-SEQUENCE OF THE RATTUS-NORVEGICUS MITOCHONDRIAL GENOME - CRYPTIC SIGNALS REVEALED BY COMPARATIVE-ANALYSIS BETWEEN VERTEBRATES [J].
GADALETA, G ;
PEPE, G ;
DECANDIA, G ;
QUAGLIARIELLO, C ;
SBISA, E ;
SACCONE, C .
JOURNAL OF MOLECULAR EVOLUTION, 1989, 28 (06) :497-516
[10]  
Hasegawa, 1992, COMPUTER SCI MONOGRA, V27