ON THE NUMERICAL EVALUATION OF LEGENDRES CHI-FUNCTION

被引:16
作者
BOERSMA, J [1 ]
DEMPSEY, JP [1 ]
机构
[1] CLARKSON UNIV,DEPT CIVIL & ENVIRONM ENGN,POTSDAM,NY 13699
关键词
D O I
10.2307/2152987
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Legendre's chi-function, chi(n)(Z) = SIGMA(k=0)infinity Z2k+1/(2k + 1)n, is reexpanded in a power series in powers of log Z . The expansion obtained is well suited for the computation of chi(n) (Z) in the two cases of real z close to 1, and z = e(i-alpha), alpha is-an-element-of R. For n = 2 and n = 3, the present computational procedure is shown to be superior to the procedure recently proposed by Dempsey, Liu, and Dempsey, which uses Plana's summation formula.
引用
收藏
页码:157 / 163
页数:7
相关论文
共 6 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1953, HIGHER TRANSCENDENTA
[3]   PLANAS SUMMATION FORMULA FOR SIGMA-INFINITY-M=1,3,M-2SIN(M-ALPHA), M-3COS(M-ALPHA), M-2AM, M-3AM [J].
DEMPSEY, KM ;
LIU, D ;
DEMPSEY, JP .
MATHEMATICS OF COMPUTATION, 1990, 55 (192) :693-703
[4]  
GAUTSCHI W, 1991, MATH COMPUT, V57, P325, DOI 10.1090/S0025-5718-1991-1079018-7
[5]  
Lewin L., 1981, POLYLOGARITHMS ASS F
[6]  
LI H, 1988, THESIS CLARKSON U PO