SOLITARY WAVES WITH DAMPED OSCILLATORY TAILS - AN ANALYSIS OF THE 5TH-ORDER KORTEWEG-DEVRIES EQUATION

被引:63
作者
GRIMSHAW, R
MALOMED, B
BENILOV, E
机构
[1] TEL AVIV UNIV,DEPT APPL MATH,IL-69978 TEL AVIV,ISRAEL
[2] UNIV NEW S WALES,SCH MATH,KENSINGTON,NSW 2033,AUSTRALIA
来源
PHYSICA D | 1994年 / 77卷 / 04期
关键词
D O I
10.1016/0167-2789(94)90302-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct oscillatory solitary wave solutions of a fifth-order Korteweg-de Vries equation, where the oscillations decay at infinity. These waves arise as a bifurcation from the linear dispersion curve at that wavenumber where the linear phase speed and group velocity coincide. Our approach is a wave-packet analysis about this wavenumber which leads in the first instance to a higher-order nonlinear Schrodinger equation, from which we then obtain the steady solitary wave solution. We then describe a complementary normal-form analysis which leads to the same result. In addition we derive the nonlinear Schrodinger equation for all wavenumbers, and list all the various anomalous cases.
引用
收藏
页码:473 / 485
页数:13
相关论文
共 23 条
[1]  
Ablowitz M.J., 1991, LONDON MATH SOC LECT, V149
[2]   ENVELOPE SOLITONS WITH STATIONARY CRESTS [J].
AKYLAS, TR .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (04) :789-791
[3]   A NEW KIND OF SOLITARY WAVE [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1992, 245 :401-411
[4]   WEAKLY NONLOCAL SOLITONS FOR CAPILLARY-GRAVITY WAVES - 5TH-DEGREE KORTEWEG-DEVRIES EQUATION [J].
BOYD, JP .
PHYSICA D-NONLINEAR PHENOMENA, 1991, 48 (01) :129-146
[5]   BIFURCATION OF A PLETHORA OF MULTIMODAL HOMOCLINIC ORBITS FOR AUTONOMOUS HAMILTONIAN-SYSTEMS [J].
CHAMPNEYS, AR ;
TOLAND, JF .
NONLINEARITY, 1993, 6 (05) :665-721
[6]  
Craik A. D. D., 1985, WAVE INTERACTIONS FL
[7]   CAPILLARY-GRAVITY SOLITARY WAVES WITH DAMPED OSCILLATIONS [J].
DIAS, F ;
IOOSS, G .
PHYSICA D, 1993, 65 (04) :399-423
[8]  
GRIMSHAW R, 1994, UNPUB SIAM J APPL MA
[9]  
GRIMSHAW RHJ, 1977, STUD APPL MATH, V56, P241
[10]   EXISTENCE OF PERTURBED SOLITARY WAVE SOLUTIONS TO A MODEL EQUATION FOR WATER-WAVES [J].
HUNTER, JK ;
SCHEURLE, J .
PHYSICA D, 1988, 32 (02) :253-268