USE OF GROBNER BASES TO DECODE BINARY CYCLIC CODES UP TO THE TRUE MINIMUM DISTANCE

被引:47
作者
CHEN, XM
REED, IS
HELLESETH, T
TRUONG, TK
机构
[1] UNIV SO CALIF,DEPT ELECT ENGN,LOS ANGELES,CA 90089
[2] UNIV BERGEN,DEPT INFORMAT,N-5020 BERGEN,NORWAY
基金
美国国家科学基金会;
关键词
CODING THEORY; CYCLIC CODES; DECODING; IDEAL THEORY; GROBNER BASES;
D O I
10.1109/18.333885
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A general algebraic method for decoding all types of binary cyclic codes is presented. It is shown that such a method can correct t = [(d - 1) / 2] errors, where d is the true minimum distance of the given cyclic code. The key idea behind this decoding technique is a systematic application of the algorithmic procedures of Grobner bases to obtain the error-locator polynomial L(z). The discussion begins from a set of syndrome polynomials F and the ideal I(F) generated by F. It is proved here that the process of transforming F to the normalized reduced Grobner basis of I(F) with respect to the ''purely lexicographical'' ordering automatically converges to L(z). Furthermore, it is shown that L(z) can be derived from any normalized Grobner basis of I(F) with respect to ally admissible total ordering. To illustrate this new decoding method, examples are given.
引用
收藏
页码:1654 / 1661
页数:8
相关论文
共 23 条
[1]  
BERLEKAMP ER, 1968, ALGEBRAIC CODING THE
[2]  
BUCHBERGER B, 1983, LECT NOTES COMPUT SC, V162, P137
[3]  
Buchberger B., 1985, MULTIDIMENSIONAL SYS, P184
[4]  
Buchberger B., 1976, ACM SIGSAM B, V10, P19, DOI DOI 10.1145/1088216.1088219
[5]  
Chen X., 1994, CONT MATH, V168, P15
[7]  
COOPER AB, 1990, COMMUNICATION CONTRO
[8]  
DUBE T, 1986, COMPLEXITY BUCHBERGE
[9]   DECODING CYCLIC AND BCH CODES UP TO ACTUAL MINIMUM DISTANCE USING NONRECURRENT SYNDROME DEPENDENCE RELATIONS [J].
FENG, GL ;
TZENG, KK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) :1716-1723
[10]   A GENERALIZATION OF THE BERLEKAMP-MASSEY ALGORITHM FOR MULTISEQUENCE SHIFT-REGISTER SYNTHESIS WITH APPLICATIONS TO DECODING CYCLIC CODES [J].
FENG, GL ;
TZENG, KK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (05) :1274-1287