SOLUTION OF LYAPUNOV EQUATIONS BY ALTERNATING DIRECTION IMPLICIT ITERATION

被引:96
作者
LU, A
WACHSPRESS, EL
机构
关键词
D O I
10.1016/0898-1221(91)90124-M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this report, a new procedure is presented for solving the Lyaunov matrix equation. First, the system is reduced to tridiagonal form with Gaussian similarity transformations. Then the resulting system is solved with Alternating-Direction-Implicit (ADI) iteration. A matrix commutation property essential for "model problem" convergence of ADI iteration applied to elliptic difference equations is not needed for this application. All stable Lyapunov matrix equations are model ADI problems.
引用
收藏
页码:43 / 58
页数:16
相关论文
共 18 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F, P55
[2]  
Barnett S., 1968, IMA J APPL MATH, V4, P33, DOI 10.1093/imamat/4.1.33
[3]   ALGORITHM - SOLUTION OF MATRIX EQUATION AX+XB = C [J].
BARTELS, RH ;
STEWART, GW .
COMMUNICATIONS OF THE ACM, 1972, 15 (09) :820-&
[4]   THE ELR METHOD FOR COMPUTING THE EIGENVALUES OF A GENERAL MATRIX [J].
DAX, A ;
KANIEL, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (04) :597-605
[5]  
GEIST GA, 1989, ORNLTM10991
[6]  
GEIST GA, 1989, ORNLTM11089
[7]  
Golub G.H., 1983, MATRIX COMPUTATIONS
[8]  
GREGORY RT, 1978, COLLECTION MATRICES
[9]   INFINITESIMAL SCALING - A NEW PROCEDURE FOR MODELING EXTERIOR FIELD PROBLEMS [J].
HURWITZ, H .
IEEE TRANSACTIONS ON MAGNETICS, 1984, 20 (05) :1918-1923
[10]  
LU A, 1990, THESIS U TENNESSEE