THE INTRINSIC TIME FOR THE STREAMLINE UPWIND PETROV-GALERKIN FORMULATION USING QUADRATIC ELEMENTS

被引:74
作者
CODINA, R
ONATE, E
CERVERA, M
机构
[1] Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports, Universitat Politècnica de Catalunya, Barcelona
关键词
D O I
10.1016/0045-7825(92)90149-E
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper the functions of the Peclet number that appear in the intrinsic time of the streamline upwind/Petrov-Galerkin (SUPG) formulation are analyzed for quadratic elements. Some related issues such as the computation of the characteristic element length and the introduction of source terms in the one-dimensional model problem are also addressed.
引用
收藏
页码:239 / 262
页数:24
相关论文
共 26 条
[1]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[2]  
BREZZI F, 1976, RAIRO RAN, V8, pR2
[3]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259
[4]  
CHRISTIE I, 1978, J NUMER METHODS ENG, V14, P1764
[5]  
CODINA R, 1990, 1ST P C NUM METH ENG
[6]   A CONSISTENT APPROXIMATE UPWIND PETROV-GALERKIN METHOD FOR CONVECTION-DOMINATED PROBLEMS [J].
GALEAO, AC ;
DOCARMO, EGD .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 68 (01) :83-95
[7]  
Girault V., 1986, FINITE ELEMENT METHO, V5
[8]  
HEINRICH J, 1979, FINITE ELEMENT METHO
[10]  
Hughes T.J.R., 1982, FINITE ELEMENTS FLUI, V4, P46