IMPROVED COMPLEXITY-BOUNDS FOR LOCATION-PROBLEMS ON THE REAL LINE

被引:93
作者
HASSIN, R
TAMIR, A
机构
[1] Department of Statistics, Raymond and Beverly Sackler, Faculty of Exact Sciences, Tel Aviv University, Ramat-Aviv, Tel Aviv
关键词
FACILITY LOCATION; CENTER PROBLEMS; MEDIAN PROBLEMS; COMPUTATIONAL COMPLEXITY;
D O I
10.1016/0167-6377(91)90041-M
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this note we apply recent results in dynamic programming to improve the complexity bounds of several median and coverage location models on the real line.
引用
收藏
页码:395 / 402
页数:8
相关论文
共 15 条
[1]  
AGGARWAL A, 1989, APPLICATIONS ARRAY S
[2]   A DYNAMIC-PROGRAMMING ALGORITHM FOR COVERING PROBLEMS WITH (GREEDY) TOTALLY BALANCED CONSTRAINT MATRICES [J].
BROIN, MW ;
LOWE, TJ .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (03) :348-357
[3]  
DASKIN M, IN PRESS OPER RES
[4]  
EDELSBRUNNEXR H, 1987, ALGORITHMS COMBINATO
[5]   AN O(EVLOGV) ALGORITHM FOR FINDING A MAXIMAL WEIGHTED MATCHING IN GENERAL GRAPHS [J].
GALIL, Z ;
MICALI, S ;
GABOW, H .
SIAM JOURNAL ON COMPUTING, 1986, 15 (01) :120-130
[6]  
GALIL Z, 1989, UNPUB LINEAR TIME AL
[7]  
HSU WL, 1982, OPER RES LETT, V1, P96
[8]  
KLAWE MM, 1989, 8916 U BRIT COL TECH
[9]  
Kolen A., 1990, DISCRETE LOCATION TH
[10]   THE MAXIMUM COVERAGE LOCATION PROBLEM [J].
MEGIDDO, N ;
ZEMEL, E ;
HAKIMI, SL .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (02) :253-261