DEGREE REDUCTION OF BEZIER CURVES

被引:83
作者
ECK, M
机构
[1] Fachbereich Mathematik, Technische Hochschule Darmstadt
关键词
DEGREE REDUCTION; BEZIER CURVE; TENSOR PRODUCT BEZIER SURFACE; CONSTRAINED CHEBYSHEV POLYNOMIALS; CONSTRAINED BEST APPROXIMATION; SUBDIVISION;
D O I
10.1016/0167-8396(93)90039-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We provide an simple algorithm for constructing an polynomial Bezier approximation of degree n - 1 to an nth degree Bezier curve. This algorithm makes previous work of Lachance more transparent as formulas are given which express the geometric relationship between the control points. The two curves agree at the two endpoints up to a preselected differentiation order since the method is based on constrained Chebyshev polynomials in order to obtain best constrained approximations. These polynomials then allow a detailed error analysis providing apriori bounds of the pointwise approximation error. The extension to tensor product surfaces is also briefly discussed.
引用
收藏
页码:237 / 251
页数:15
相关论文
共 13 条
[1]  
Dannenberg L., 1985, Computer-Aided Geometric Design, V2, P123, DOI 10.1016/0167-8396(85)90015-9
[2]  
Degen W.L.F., 1992, MATH METHODS COMPUTE, VII, P171
[3]  
ECK M, 1992, IN PRESS MATH SURFAC, V5
[4]  
EISELE E, 1992, IN PRESS J APPROX TH
[5]  
Farin G., 1991, CURVES SURFACES COMP
[6]   INTERACTIVE INTERPOLATION AND APPROXIMATION BY BEZIER POLYNOMIALS [J].
FORREST, AR .
COMPUTER JOURNAL, 1972, 15 (01) :71-&
[7]  
Hoschek J., 1987, Computer-Aided Geometric Design, V4, P59, DOI 10.1016/0167-8396(87)90024-0
[8]  
Lachance M. A., 1988, Computer-Aided Geometric Design, V5, P195, DOI 10.1016/0167-8396(88)90003-9
[9]  
LACHANCE MA, 1979, CONSTRUCTIVE APPROAC
[10]  
Schumaker L., 1981, SPLINE FUNCTIONS BAS