HIGH-RESOLUTION CRYSTAL-STRUCTURES OF AMPHIBIAN RED-CELL L-FERRITIN - POTENTIAL ROLES FOR STRUCTURAL PLASTICITY AND SOLVATION IN FUNCTION

被引:113
作者
TRIKHA, J
THEIL, EC
ALLEWELL, NM
机构
[1] UNIV MINNESOTA, DEPT BIOCHEM, ST PAUL, MN 55108 USA
[2] N CAROLINA STATE UNIV, DEPT BIOCHEM, RALEIGH, NC 27695 USA
关键词
IRON; ION TRANSPORT; SOLVATION; ELECTROSTATIC EFFECTS; COOPERATIVITY;
D O I
10.1006/jmbi.1995.0274
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ferritin is a highly conserved multisubunit protein in animals, plants and microbes which assembles with cubic symmetry and transports hydrated iron ions and protons to and from a mineralized core in the protein interior. We report here the high resolution structures of recombinant amphibian red-cell L ferritin and two mutants solved under two sets of conditions. In one mutant, Glu56, 57, 58 and 60 were replaced with Ala, producing a lag phase in the kinetics of iron uptake, In the second mutant, His25 was replaced with Tyr with, at most, subtle effects on function. A molecule of betaine, used in the purification, is bound in all structures at the 2-fold axis near the recently identified heme binding site of bacterioferritin and horse spleen L ferritin. Comparisons of the five amphibian structures identify two regions of the molecule in which conformational flexibility may be related to function. The positions and interactions of a set of 10 to 18 side-chains, most of which are on the inner surface of the protein, are sensitive both to solution conditions and to the Glu-->Ala mutation. A subset of these side-chains and a chain of ordered solvent molecules extends from the vicinity of Glu56 to 58 and Glu60 to the 3-fold channel in the wild type protein and may be involved in the transport of either iron or protons. The ''spine of hydration'' is disrupted in the Glu-->Ala mutant. In contrast, H25Y mutation shifts the positions of backbone atoms between the site of the mutation and the 4-fold axis and side-chain positions throughout the structure; the largest changes in the position of backbone atoms are in the DE loop and E helix, approximately 10 Angstrom from the mutation site. In combination, these results indicate that solvation, structural plasticity and cooperative structural changes may play a role in ferritin function. Analogies with the structure and function of ion channel proteins such as annexins are noted.
引用
收藏
页码:949 / 967
页数:19
相关论文
共 43 条
[1]   IRON (II) OXIDATION AND EARLY INTERMEDIATES OF IRON-CORE FORMATION IN RECOMBINANT HUMAN H-CHAIN FERRITIN [J].
BAUMINGER, ER ;
HARRISON, PM ;
HECHEL, D ;
HODSON, NW ;
NOWIK, I ;
TREFFRY, A ;
YEWDALL, SJ .
BIOCHEMICAL JOURNAL, 1993, 296 :709-719
[2]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[3]   SLOW-COOLING PROTOCOLS FOR CRYSTALLOGRAPHIC REFINEMENT BY SIMULATED ANNEALING [J].
BRUNGER, AT ;
KRUKOWSKI, A ;
ERICKSON, JW .
ACTA CRYSTALLOGRAPHICA SECTION A, 1990, 46 :585-593
[4]   CRYSTALLOGRAPHIC R-FACTOR REFINEMENT BY MOLECULAR-DYNAMICS [J].
BRUNGER, AT ;
KURIYAN, J ;
KARPLUS, M .
SCIENCE, 1987, 235 (4787) :458-460
[5]  
BRUNGER AT, 1992, X PLOR MANUAL VERSIO
[6]   PROTEIN FOLDING - EVALUATION OF SOME SIMPLE RULES FOR THE ASSEMBLY OF HELICES INTO TERTIARY STRUCTURES WITH MYOGLOBIN AS AN EXAMPLE [J].
COHEN, FE ;
RICHMOND, TJ ;
RICHARDS, FM .
JOURNAL OF MOLECULAR BIOLOGY, 1979, 132 (03) :275-288
[7]   SOLUTION STRUCTURE OF APOCYTOCHROME B(562) [J].
FENG, YQ ;
SLIGAR, SG ;
WAND, AJ .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (01) :30-35
[8]   FERRITIN - DESIGN AND FORMATION OF AN IRON-STORAGE MOLECULE [J].
FORD, GC ;
HARRISON, PM ;
RICE, DW ;
SMITH, JMA ;
TREFFRY, A ;
WHITE, JL ;
YARIV, J .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1984, 304 (1121) :551-+
[9]   STRUCTURE OF A UNIQUE TWOFOLD SYMMETRICAL HEME-BINDING SITE [J].
FROLOW, F ;
KALB, AJ ;
YARIV, J .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (07) :453-460
[10]  
GLACKIN MP, 1991, CONFORMATIONS FORCES, P18