A MODEL FOR MOTION COHERENCE AND TRANSPARENCY

被引:124
作者
WILSON, HR
KIM, J
机构
[1] Visual Sciences Center, University of Chicago, Chicago
关键词
MOTION; COHERENCE; TRANSPARENCY; NEURAL MODEL; NON-FOURIER MOTION;
D O I
10.1017/S0952523800007008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A recent model for two-dimensional motion processing in MT has demonstrated that perceived direction can be accurately predicted by combining Fourier and non-Fourier component motion signals using a vector sum computation. The vector sum direction is computed by a neural network that weights Fourier and non-Fourier components by the cosine of the component direction relative to that of each pattern unit, after which competitive inhibition extracts the signals of the most active units. It is shown here that a minor modification of the connectivity in this network suffices to predict transitions from motion coherence to transparency under a wide range of circumstances. It is only necessary that the cosine weighting function and competitive inhibition be limited to directions within +/-120 deg of each pattern unit's preferred direction. This network responds by signaling one pattern direction for coherent motion but two distinct directions for transparent motion. Based on this, neural networks with properties of MT and MST neurons can automatically signal motion coherence or transparency. In addition, the model accurately predicts motion repulsion under transparency conditions.
引用
收藏
页码:1205 / 1220
页数:16
相关论文
共 84 条
[1]   SPATIOTEMPORAL ENERGY MODELS FOR THE PERCEPTION OF MOTION [J].
ADELSON, EH ;
BERGEN, JR .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1985, 2 (02) :284-299
[2]   PHENOMENAL COHERENCE OF MOVING VISUAL-PATTERNS [J].
ADELSON, EH ;
MOVSHON, JA .
NATURE, 1982, 300 (5892) :523-525
[3]   COLUMNAR ORGANIZATION OF DIRECTIONALLY SELECTIVE CELLS IN VISUAL AREA MT OF THE MACAQUE [J].
ALBRIGHT, TD ;
DESIMONE, R ;
GROSS, CG .
JOURNAL OF NEUROPHYSIOLOGY, 1984, 51 (01) :16-31
[4]   FORM-CUE INVARIANT MOTION PROCESSING IN PRIMATE VISUAL-CORTEX [J].
ALBRIGHT, TD .
SCIENCE, 1992, 255 (5048) :1141-1143
[5]  
Andersen R A, 1993, Curr Opin Neurobiol, V3, P171, DOI 10.1016/0959-4388(93)90206-E
[6]   SPATIAL AND TEMPORAL SELECTIVITY OF THE HUMAN MOTION DETECTION SYSTEM [J].
ANDERSON, SJ ;
BURR, DC .
VISION RESEARCH, 1985, 25 (08) :1147-1154
[7]   DETECTING THE DISPLACEMENTS OF SPATIAL BEATS - NO ROLE FOR DISTORTION PRODUCTS [J].
BADCOCK, DR ;
DERRINGTON, AM .
VISION RESEARCH, 1989, 29 (06) :731-739
[8]   DETECTING THE DISPLACEMENT OF PERIODIC PATTERNS [J].
BADCOCK, DR ;
DERRINGTON, AM .
VISION RESEARCH, 1985, 25 (09) :1253-1258
[9]  
BECK J, 1985, HUMAN MACHINE VISION, V2, P1
[10]  
Bergen J. R., 1991, COMPUTATIONAL MODELS, V17, P253