THE FINITE TODA-LATTICES

被引:97
作者
INOZEMTSEV, VI
机构
关键词
D O I
10.1007/BF01218159
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:629 / 638
页数:10
相关论文
共 25 条
[1]   KOWALEWSKI ASYMPTOTIC METHOD, KAC-MOODY LIE-ALGEBRAS AND REGULARIZATION [J].
ADLER, M ;
VANMOERBEKE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (01) :83-106
[2]   LINEARIZATION OF HAMILTONIAN-SYSTEMS, JACOBI-VARIETIES AND REPRESENTATION-THEORY [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1980, 38 (03) :318-379
[3]   COMPLETELY INTEGRABLE SYSTEMS, EUCLIDEAN LIE-ALGEBRAS, AND CURVES [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1980, 38 (03) :267-317
[4]   PERTURBATIONS OF PERIODIC TODA LATTICE [J].
BOGOYAVLENSKY, OI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 51 (03) :201-209
[5]   TODA LATTICE .2. EXISTENCE OF INTEGRALS [J].
FLASCHKA, H .
PHYSICAL REVIEW B, 1974, 9 (04) :1924-1925
[6]   TODA LATTICE .2. INVERSE-SCATTERING SOLUTION [J].
FLASCHKA, H .
PROGRESS OF THEORETICAL PHYSICS, 1974, 51 (03) :703-716
[7]   CLASSICAL AND QUANTUM-MECHANICAL SYSTEMS OF TODA LATTICE TYPE .1. [J].
GOODMAN, R ;
WALLACH, NR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (03) :355-386
[8]   CLASSICAL AND QUANTUM-MECHANICAL SYSTEMS OF TODA-LATTICE TYPE .2. SOLUTIONS OF THE CLASSICAL FLOWS [J].
GOODMAN, R ;
WALLACH, NR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (02) :177-217
[9]   EXTENSION OF THE CLASS OF INTEGRABLE DYNAMICAL-SYSTEMS CONNECTED WITH SEMISIMPLE LIE-ALGEBRAS [J].
INOZEMTSEV, VI ;
MESHCHERYAKOV, DV .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 9 (01) :13-18
[10]   NEW COMPLETELY INTEGRABLE MULTIPARTICLE DYNAMICAL-SYSTEMS [J].
INOZEMTSEV, VI .
PHYSICA SCRIPTA, 1984, 29 (06) :518-520