AN INTEGRAL SOLUTION OF MOVING BOUNDARY-PROBLEMS

被引:5
作者
MASHENA, M [1 ]
HAJISHEIKH, A [1 ]
机构
[1] UNIV TEXAS, DEPT MECH ENGN, ARLINGTON, TX 76019 USA
关键词
METALS AND ALLOYS - Solidification - TEMPERATURE DISTRIBUTION - Monitoring;
D O I
10.1016/0017-9310(86)90239-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
An integral method is presented that utilizes Galerkin functions and leads to closed-form solutions for temperature distribution in the liquid and solid phase. Unlike methods using quasi-steady assumptions, this method retains the contribution of the internal heat capacity of solid and liquid, therefore, accommodating problems involving time-dependent temperature along the boundary.
引用
收藏
页码:317 / 329
页数:13
相关论文
共 33 条
[1]  
ALLEN DND, 1962, Q J MECH APPL MATH, V15, P35
[2]  
BATHELT AG, 1979, THESIS PURDUE U
[3]  
Baxter DC, 1962, J HEAT TRANSFER, V84, P317, DOI DOI 10.1115/1.3684380
[4]   NUMERICAL SOLUTION OF PHASE-CHANGE PROBLEMS [J].
BONACINA, C ;
COMINI, G ;
FASANO, A ;
PRIMICERIO, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1973, 16 (10) :1825-1832
[5]   NUMERICAL-SOLUTION OF STEFAN PROBLEMS [J].
CROWLEY, AB .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1978, 21 (02) :215-219
[6]  
GOODMAN TR, 1960, T AM SOC MECH ENG B, P16
[7]  
GOODMAN TR, 1958, J HEAT TRANSFER, V80, P335
[9]  
Haji-Sheikh A., 1983, PROGR ASTRON AERON, V86, P241
[10]  
HAJISHEIKH A, 1967, T ASME C, V89, P121, DOI DOI 10.1115/1.3614330