CONFORMALLY COVARIANT OPERATORS ON RIEMANN SURFACES (WITH APPLICATIONS TO CONFORMAL AND INTEGRABLE MODELS)

被引:31
作者
GIERES, F
机构
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1993年 / 8卷 / 01期
关键词
D O I
10.1142/S0217751X93000023
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Following the standard procedure for gauging in Yang-Mills and gravitational theories, we introduce projective connections to covariantize differential operators on Riemann surfaces. We present applications in integrable models (Lax pairs, Poisson operators) and conformal models (conformal Ward identity, diffeomorphism anomaly, Krichever-Novikov algebra, Virasoro algebra and its representations, Kac-Moody algebras, W-algebras, WZW model, twistor theory). The generalization to higher dimensions is indicated and the whole discussion is generalized to the supersymmetric case (both in superspace and in component field formalism).
引用
收藏
页码:1 / 58
页数:58
相关论文
empty
未找到相关数据