FRACTIONAL MASTER-EQUATIONS AND FRACTAL TIME RANDOM-WALKS

被引:281
作者
HILFER, R
ANTON, L
机构
[1] SCUOLA INT SUPER STUDI AVANZATI, I-34013 TRIESTE, ITALY
[2] UNIV MAINZ, INST PHYS, D-55099 MAINZ, GERMANY
关键词
D O I
10.1103/PhysRevE.51.R848
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fractional master equations containing fractional time derivatives of order 0<ω≤1 are introduced on the basis of a recent classification of time generators in ergodic theory. It is shown that fractional master equations are contained as a special case within the traditional theory of continuous time random walks. The corresponding waiting time density ψ(t) is obtained exactly as ψ(t)=(tω-1/C)Eω,ω(-tω/C), where Eω,ω(x) is the generalized Mittag-Leffler function. This waiting time distribution is singular both in the long time as well as in the short time limit. © 1995 The American Physical Society.
引用
收藏
页码:R848 / R851
页数:4
相关论文
共 24 条
[1]  
ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
[2]  
Barber M., 1970, RANDOM RESTRICTED WA
[3]   LATTICES OF EFFECTIVELY NONINTEGRAL DIMENSIONALITY [J].
DHAR, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (04) :577-585
[4]  
Erdelyi A., 1981, HIGHER TRANSCENDENTA, VIII
[5]  
Fukushima M., 1992, POTENTIAL ANAL, V1, P1, DOI DOI 10.1007/BF00249784
[6]   CLASSIFICATION-THEORY FOR ANEQUILIBRIUM PHASE-TRANSITIONS [J].
HILFER, R .
PHYSICAL REVIEW E, 1993, 48 (04) :2466-2475
[7]  
HILFER R, 1988, 982051 U CAL LOS ANG
[8]  
HILFER R, IN PRESS
[9]  
HILFER R, 1986, RENORMIERUNGSANSATZE
[10]  
HILFER R, IN PRESS CHAOS SOLIT