EFFECTS OF HYDROGEN AND FORMATE ON THE DEGRADATION OF PROPIONATE AND BUTYRATE IN THERMOPHILIC GRANULES FROM AN UPFLOW ANAEROBIC SLUDGE BLANKET REACTOR

被引:113
作者
SCHMIDT, JE
AHRING, BK
机构
关键词
D O I
10.1128/AEM.59.8.2546-2551.1993
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Degradation of propionate and butyrate in whole and disintegrated granules from a thermophilic (55-degrees-C) upflow anaerobic sludge blanket reactor fed with acetate, propionate, and butyrate as substrates was examined. The propionate and butyrate degradation rates in whole granules were 1.16 and 4.0 mumol/min/g of volatile solids, respectively, and the rates decreased 35 2nd 25%, respectively, after disintegration of the granules. The effect of adding different hydrogen-oxidizing bacteria (both sulfate reducers and methanogens), some of which used formate in addition to hydrogen, to disintegrated granules was tested. Addition or either Methanobacterium thermoautotrophicum DELTAH, a hydrogen-utilizing methanogen that does not use formate, or Methanobacterium sp. strain CB12, a hydrogen- and formate-utilizing methanogen, to disintegrated granules increased the degradation rate of both propionate and butyrate. Furthermore, addition of a thermophilic sulfate-reducing bacterium (a Desulfotomaculum sp. isolated in our laboratory) to disintegrated granules improved the degradation or both substrates even more than the addition of methanogens. By monitoring the hydrogen partial pressure in the cultures, a correlation between the hydrogen partial pressure and the degradation rate of propionate and butyrate was observed, showing a decrease in the degradation rate with increased hydrogen partial pressure. No significant differences in the stimulation of the degradation rates were observed when the disintegrated granules were supplied with methanogens that utilized hydrogen only or hydrogen and formate. This indicated that interspecies formate transfer was not important for stimulation of propionate and butyrate degradation.
引用
收藏
页码:2546 / 2551
页数:6
相关论文
共 35 条
[1]   PRODUCT INHIBITION OF BUTYRATE METABOLISM BY ACETATE AND HYDROGEN IN A THERMOPHILIC COCULTURE [J].
AHRING, BK ;
WESTERMANN, P .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1988, 54 (10) :2393-2397
[2]   KINETICS OF BUTYRATE, ACETATE, AND HYDROGEN METABOLISM IN A THERMOPHILIC, ANAEROBIC, BUTYRATE-DEGRADING TRICULTURE [J].
AHRING, BK ;
WESTERMANN, P .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1987, 53 (02) :434-439
[3]   DIFFUSION OF THE INTERSPECIES ELECTRON CARRIERS H-2 AND FORMATE IN METHANOGENIC ECOSYSTEMS AND ITS IMPLICATIONS IN THE MEASUREMENT OF KM FOR H-2 OR FORMATE UPTAKE [J].
BOONE, DR ;
JOHNSON, RL ;
LIU, Y .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1989, 55 (07) :1735-1741
[4]   PROPIONATE-DEGRADING BACTERIUM, SYNTROPHOBACTER-WOLINII SP-NOV GEN-NOV FROM METHANOGENIC ECOSYSTEMS [J].
BOONE, DR ;
BRYANT, MP .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1980, 40 (03) :626-632
[5]   EFFECTS OF 2-BROMOETHANESULFONIC ACID AND 2-CHLOROETHANESULFONIC ACID ON ACETATE UTILIZATION IN A CONTINUOUS-FLOW METHANOGENIC FIXED-FILM COLUMN [J].
BOUWER, EJ ;
MCCARTY, PL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1983, 45 (04) :1408-1410
[6]   METHANOBACILLUS OMELIANSKII A SYMBIOTIC ASSOCIATION OF 2 SPECIES OF BACTERIA [J].
BRYANT, MP ;
WOLIN, EA ;
WOLIN, MJ ;
WOLFE, RS .
ARCHIV FUR MIKROBIOLOGIE, 1967, 59 (1-3) :20-+
[7]  
CLESCERI LS, 1985, STANDARD METHODS EXA
[8]   GAS METABOLISM EVIDENCE IN SUPPORT OF THE JUXTAPOSITION OF HYDROGEN-PRODUCING AND METHANOGENIC BACTERIA IN SEWAGE-SLUDGE AND LAKE-SEDIMENTS [J].
CONRAD, R ;
PHELPS, TJ ;
ZEIKUS, JG .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1985, 50 (03) :595-601
[9]   THE CAPACITY OF HYDROGENOTROPHIC ANAEROBIC-BACTERIA TO COMPETE FOR TRACES OF HYDROGEN DEPENDS ON THE REDOX POTENTIAL OF THE TERMINAL ELECTRON-ACCEPTOR [J].
CORDRUWISCH, R ;
SEITZ, HJ ;
CONRAD, R .
ARCHIVES OF MICROBIOLOGY, 1988, 149 (04) :350-357
[10]   CHEMICAL AND BACTERIOLOGICAL COMPOSITION OF GRANULAR METHANOGENIC SLUDGE [J].
DOLFING, J ;
GRIFFIOEN, A ;
VANNEERVEN, ARW ;
ZEVENHUIZEN, LPTM .
CANADIAN JOURNAL OF MICROBIOLOGY, 1985, 31 (08) :744-750