RICCATI EQUATION APPROACH TO MAXIMIZING THE COMPLEX STABILITY RADIUS BY STATE FEEDBACK

被引:17
作者
HINRICHSEN, D
PRITCHARD, AJ
TOWNLEY, SB
机构
[1] UNIV WARWICK,CTR CONTROL THEORY,COVENTRY CV4 7AL,W MIDLANDS,ENGLAND
[2] UNIV BATH,DEPT MATH,BATH BA2 7AY,AVON,ENGLAND
关键词
D O I
10.1080/00207179008953567
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we study the problem of maximizing the complex stability radius of a linear time-invariant state-space system by linear state feedback. We show that the supreme achievable stability radius can be characterized via parametrized Riccati equations. The dependency on the parameters is examined and the limiting behav- iour described. Finally, the relationship between the supremum of the achievable stability radii and the distance of a system from non-stabilizability is investigated. © 1990 Taylor and Francis Group, LLC.
引用
收藏
页码:769 / 794
页数:26
相关论文
共 37 条
[1]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[2]   ROBUST STABILITY WITH STRUCTURED REAL PARAMETER PERTURBATIONS [J].
BIERNACKI, RM ;
HWANG, H ;
BHATTACHARYYA, SP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (06) :495-506
[3]  
Boyd S., 1989, Mathematics of Control, Signals, and Systems, V2, P207, DOI 10.1007/BF02551385
[4]  
Brockett R. W., 1970, FINITE DIMENSIONAL L
[5]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[6]   ALGEBRAIC RICCATI EQUATION AND SYMPLECTIC ALGEBRA [J].
FAIBUSOVICH, LE .
INTERNATIONAL JOURNAL OF CONTROL, 1986, 43 (03) :781-792
[7]  
FRANCIS B, 1987, IEEE T AUTOMATIC CON, V24, P616
[8]  
HINRICHSEN, 1989, 215 U BREM I DYN SYS
[9]  
HINRICHSEN, 1989, 28TH P IEEE C DEC CO
[10]  
HINRICHSEN, 1988, 184 U BREM I DYN SYS