1 Amphetamine-induced hypothermia in mice is faciliated by dopaminergic stimulation and 5-hydroxtryptaminergic inhibition. The present study was designed to investigate: (a) the involvement of other neuronal systems, such as the gamma-aminobutyric acid (GABA), the opioid and the cholecystokinin (CCK-8) systems; (b) the possible contribution of hydroxylated metabolites of amphetamine to the hypothermia; (c) the capacity of dopamine itself to induce hypothermia and its mechanisms, in order to clarify the resistance of amphetamine-induced hypothermia to certain neuroleptics. 2 Pretreatment with the GABA antagonists, bicuculline and picrotoxin, did not inhibit amphetamine-induced hypothermia. The GABA(B) agonist, baclofen (2.5 mg kg-1, i.p.) potentiated this hypothermia, whereas the GABA(A) agonist, muscimol, did not. gamma-Butyrolactone (GBL) (40 mg kg-1, i.p.) and the neuropeptide CCK-8 (0.04 mg kg-1, i.p.) also induced potentiation. The opioid antagonist, naloxone, was without effect. 3 Dopamine itself (3, 9, 16 and 27-mu-g, i.c.v.) induced less hypothermia than the same doses of amphetamine. Sulpiride did not block dopamine-induced hypothermia, but pimozide (4 mg kg-1, i.p.), cis(z)flupentixol (0.25 mg kg-1, i.p.) and haloperidol (5-mu-g, i.c.v.) did. The direct dopamine receptor agonist, apomorphine, did not alter the hypothermia. Neither the 5-hydroxytryptamine (5-HT) receptor blocker, cyproheptadine, nor the inhibitor of 5-HT synthesis, p-chlorophenylalanine (PCPA), modified dopamine-induced hypothermia. Fluoxetine, an inhibitor of 5-HT reuptake, had no effect, whereas quipazine (6 mg kg-1, i.p.), a 5-HT agonist, totally prevented the hypothermia. Hypothermia was unaffected by pretreatment with CCK-8. 4 These data indicate that the hypothermia induced by amphetamine involves not only dopaminergic and 5-hydroxytryptaminergic systems which are functionally antagonistic, but is also facilitated by direct or indirect GABA and CCK-8 receptor stimulation. This facilitation could result, in part, from modulation of dopaminergic neurotransmission. This may explain the apparent resistance of amphetamine-induced hypothermia to some neuroleptics, while dopamine-induced hypothermia is not resistant. The possible action of hydroxylated metabolites of amphetamine may also help to explain these differences.