AN OPTIMAL TRIANGULAR MESHES FOR MINIMIZING THE GRADIENT ERROR

被引:86
作者
DAZEVEDO, EF [1 ]
SIMPSON, RB [1 ]
机构
[1] UNIV WATERLOO,DEPT COMP SCI,WATERLOO N2L 3G1,ONTARIO,CANADA
关键词
D O I
10.1007/BF01385784
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Construction of optimal triangular meshes for controlling the errors in gradient estimation for piecewise linear interpolation of data functions in the plane is discussed. Using an appropriate linear coordinate transformation, rigorously optimal meshes for controlling the error in quadratic data functions are constructed. It is shown that the transformation can be generated as a curvilinear coordinate transformation for any C data function with nonsingular Hessian matrix. Using this transformation, a construction of nearly optimal meshes for general data functions is described and the error equilibration properties of these meshes discussed. In particular, it is shown that equilibration of errors is not a sufficient condition for optimality. A comparison of meshes generated under several different criteria is made, and their equilibrating properties illustrated.
引用
收藏
页码:321 / 348
页数:28
相关论文
共 18 条
[1]  
ASCHER U, 1979, MATH COMPUT, V33, P659, DOI 10.1090/S0025-5718-1979-0521281-7
[2]   ANALYSIS OF OPTIMAL FINITE-ELEMENT MESHES IN R [J].
BABUSKA, I ;
RHEINBOLDT, WC .
MATHEMATICS OF COMPUTATION, 1979, 33 (146) :435-463
[3]  
BANK RE, 1990, PMTMG SOFTWARE PACKA
[4]  
CHAR BW, 1985, MAPLE USERS GUIDE WA
[5]  
DAZEVEDO FF, IN PRESS SIAM J SCI, V12
[6]  
de Boor C, 1973, SPLINE FUNCTIONS APP, P57
[7]   AN OPTIMAL TRIANGULATION FOR 2ND-ORDER ELLIPTIC PROBLEMS [J].
DELFOUR, M ;
PAYRE, G ;
ZOLESIO, JP .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1985, 50 (03) :231-261
[8]   A METHOD OF GRID OPTIMIZATION FOR FINITE-ELEMENT METHODS [J].
DIAZ, AR ;
KIKUCHI, N ;
TAYLOR, JE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1983, 41 (01) :29-45
[9]  
Kurata M., 1982, NUMERICAL ANAL SEMIC
[10]  
MCGIRR MG, 1984, COMPUTATIONAL TECHNI, V83, P236