INVERSION AND FACTORIZATION OF NON-HERMITIAN QUASI-TOEPLITZ MATRICES

被引:10
作者
BISTRITZ, Y [1 ]
KAILATH, T [1 ]
机构
[1] STANFORD UNIV,INFORMAT SYST LAB,STANFORD,CA 94305
关键词
D O I
10.1016/0024-3795(88)90161-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:77 / 121
页数:45
相关论文
共 25 条
[1]   NUMERICAL SOLUTION OF LINEAR EQUATIONS WITH TOEPLITZ AND VECTOR TOEPLITZ MATRICES [J].
BAREISS, EH .
NUMERISCHE MATHEMATIK, 1969, 13 (05) :404-&
[2]  
Baxter G., 1961, J MATH ANAL APPL, V2, P223, DOI 10.1016/0022-247X(61)90033-6
[3]  
BISTRITZ Y, IN PRESS IEEE T INFO
[4]  
DELOSME JM, 1982, THESIS STANFORD U
[5]   ON THE TOEPLITZ EMBEDDING OF AN ARBITRARY MATRIX [J].
DELSARTE, P ;
GENIN, Y ;
KAMP, Y .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 51 (JUN) :97-119
[6]   A POLYNOMIAL APPROACH TO THE GENERALIZED LEVINSON ALGORITHM BASED ON THE TOEPLITZ DISTANCE [J].
DELSARTE, P ;
GENIN, YV ;
KAMP, Y .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (02) :268-278
[7]   EXTENDED LEVINSON AND CHANDRASEKHAR EQUATIONS FOR GENERAL DISCRETE-TIME LINEAR-ESTIMATION PROBLEMS [J].
FRIEDLANDER, B ;
KAILATH, T ;
MORF, M ;
LJUNG, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (04) :653-659
[8]   NEW INVERSION FORMULAS FOR MATRICES CLASSIFIED IN TERMS OF THEIR DISTANCE FROM TOEPLITZ MATRICES [J].
FRIEDLANDER, B ;
MORF, M ;
KAILATH, T ;
LJUNG, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 27 (OCT) :31-60
[9]  
GERONIMUS YL, 1960, POLYNOMIAL ORTHOGONA
[10]  
GOHBERG I, 1974, T MATH MONOGRAPHS, V41