ELECTRIC-LOAD FORECASTING USING AN ARTIFICIAL NEURAL NETWORK

被引:821
作者
PARK, DC
ELSHARKAWI, MA
MARKS, RJ
ATLAS, LE
DAMBORG, MJ
机构
[1] Department of Electrical Engineering, FT-10, University of Washington, Seattle
基金
美国国家科学基金会;
关键词
LOAD FORECASTING; ARTIFICIAL NEURAL NETWORK;
D O I
10.1109/59.76685
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an artificial neural network(ANN) approach to electric load forecasting. The ANN is used to learn the relationship among past, current and future temperatures and loads. In order to provide the forecasted load, the ANN interpolates among the load and temperature data in a training data set. The average absolute errors of the one-hour and 24-hour ahead forecasts in our test on actual utility data are shown to be 1.40% and 2.06%, respectively. This compares with an average error of 4.22% for 24-hour ahead forecasts with a currently used forecasting technique applied to the same data.
引用
收藏
页码:442 / 449
页数:8
相关论文
共 30 条
  • [1] AGGOUNE M, 1989, MAY P PICA, P252
  • [2] [Anonymous], 1987, LEARNING INTERNAL RE
  • [3] WEATHER LOAD MODEL FOR ELECTRIC DEMAND AND ENERGY FORECASTING
    ASBURY, CE
    [J]. IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1975, 94 (04): : 1111 - 1116
  • [4] ATLAS L, 1989, 1989 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-3, P915, DOI 10.1109/ICSMC.1989.71429
  • [5] Box G.E.P., 1976, TIME SERIES ANAL
  • [6] CHAN EH, 1989, MAY P PICA, P246
  • [7] SHORT-TERM LOAD FORECASTING USING GENERAL EXPONENTIAL SMOOTHING
    CHRISTIAANSE, WR
    [J]. IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1971, PA90 (02): : 900 - +
  • [8] DAVEY J, 1972, IEEE T PAS, V91, P971
  • [9] ELSHARKAWI M, 1989, 2ND P S EXP SYST APP, P366
  • [10] ADAPTIVE SHORT-TERM FORECASTING OF HOURLY LOADS USING WEATHER INFORMATION
    GUPTA, PC
    YAMADA, K
    [J]. IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1972, 91 (05): : 2085 - &