ASYMMETRIC LITTLE SPIN-GLASS MODEL

被引:10
作者
BRUNETTI, R
PARISI, G
RITORT, F
机构
[1] UNIV ROME 2,DIPARTIMENTO FIS,I-00173 ROME,ITALY
[2] UNIV BARCELONA,DEPT FIS FONAMENTAL,E-08020 BARCELONA,SPAIN
来源
PHYSICAL REVIEW B | 1992年 / 46卷 / 09期
关键词
D O I
10.1103/PhysRevB.46.5339
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the static properties of the Little model with asymmetric couplings. We show that the thermodynamics of this model coincides with that of the Sherrington-Kirkpatrick model, and we compute the main finite-size corrections to the difference of the free energy between these two models and to some clarifying order parameters. Our results agree with numerical simulations. Numerical results are presented for the symmetric Little model, which show that the same conclusions are also valid in this case.
引用
收藏
页码:5339 / 5350
页数:12
相关论文
共 16 条
  • [1] SPIN-GLASS MODELS OF NEURAL NETWORKS
    AMIT, DJ
    GUTFREUND, H
    [J]. PHYSICAL REVIEW A, 1985, 32 (02): : 1007 - 1018
  • [2] SPIN-GLASSES - EXPERIMENTAL FACTS, THEORETICAL CONCEPTS, AND OPEN QUESTIONS
    BINDER, K
    YOUNG, AP
    [J]. REVIEWS OF MODERN PHYSICS, 1986, 58 (04) : 801 - 976
  • [3] SOME OBSERVATIONS ON THE MEAN-FIELD THEORY OF SPIN-GLASSES
    BRAY, AJ
    MOORE, MA
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1980, 13 (03): : 419 - 434
  • [4] EIGENSTATES AND LIMIT-CYCLES IN THE SK MODEL
    CABASINO, S
    MARINARI, E
    PAOLUCCI, P
    PARISI, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (22): : 4201 - 4210
  • [5] STABILITY OF SHERRINGTON-KIRKPATRICK SOLUTION OF A SPIN GLASS MODEL
    DEALMEIDA, JRL
    THOULESS, DJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (05): : 983 - 990
  • [6] EIGENVALUES OF THE STABILITY MATRIX FOR PARISI SOLUTION OF THE LONG-RANGE SPIN-GLASS
    DEDOMINICIS, C
    KONDOR, I
    [J]. PHYSICAL REVIEW B, 1983, 27 (01): : 606 - 608
  • [7] DEDOMINICIS C, 1983, J PHYS A-MATH GEN, V16, P2063, DOI 10.1088/0305-4470/16/9/028
  • [8] DEDOMINICIS C, 1985, LECTURE NOTES PHYSIC, V216
  • [9] LITTLE W A, 1974, Mathematical Biosciences, V19, P101, DOI 10.1016/0025-5564(74)90031-5
  • [10] MEZARD M, 1987, LECTURE NOTES PHYSIC, V9