CONFIDENCE-INTERVALS FOR THE LARGEST AUTOREGRESSIVE ROOT IN UNITED-STATES MACROECONOMIC TIME-SERIES

被引:214
作者
STOCK, JH
机构
[1] University of California -Berkeley, Berkeley
基金
美国国家科学基金会;
关键词
D O I
10.1016/0304-3932(91)90034-L
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper provides asymptotic confidence intervals for the largest autoregressive root of a time series when this root is close to one. The intervals are readily constructed either graphically or using tables in the appendix. When applied to the Nelson-Plosser (1982) data set, the main conclusion is that the confidence intervals typically are wide. The conventional emphasis on testing for whether the largest root equals one fails to convey the substantial sampling variability associated with this measure of persistence.
引用
收藏
页码:435 / 459
页数:25
相关论文
共 26 条
[1]  
AHTOLA J, 1984, BIOMETRIKA, V71, P263
[2]  
ANDREWS DWK, 1990, UNPUB EXACT UNBIASED
[3]   ON THE THEORY OF TESTING FOR UNIT ROOTS IN OBSERVED TIME-SERIES [J].
BHARGAVA, A .
REVIEW OF ECONOMIC STUDIES, 1986, 53 (03) :369-384
[4]  
BOBKOSKI MJ, 1983, THESIS U WISCONSIN M
[5]   ARE OUTPUT FLUCTUATIONS TRANSITORY [J].
CAMPBELL, JY ;
MANKIW, NG .
QUARTERLY JOURNAL OF ECONOMICS, 1987, 102 (04) :857-880
[6]  
CAVANAGH C, 1985, UNPUB ROOTS LOCAL UN
[7]  
CHAN NH, 1988, J AM STAT ASSOC, V83, P857
[8]   ASYMPTOTIC INFERENCE FOR NEARLY NONSTATIONARY AR(1) PROCESSES [J].
CHAN, NH ;
WEI, CZ .
ANNALS OF STATISTICS, 1987, 15 (03) :1050-1063
[9]  
Christiano L. J., 1990, CARNEGIE-ROCHESTER C, V32, P7, DOI [10.1016/0167-2231(90)90021-C, DOI 10.1016/0167-2231(90)90021-C]
[10]   HOW BIG IS THE RANDOM-WALK IN GNP [J].
COCHRANE, JH .
JOURNAL OF POLITICAL ECONOMY, 1988, 96 (05) :893-920