SIZE OF LARGEST AND 2ND LARGEST CLUSTER IN RANDOM PERCOLATION

被引:59
作者
MARGOLINA, A
HERRMANN, HJ
STAUFFER, D
机构
关键词
D O I
10.1016/0375-9601(82)90219-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:73 / 75
页数:3
相关论文
共 12 条
[1]  
DEUTSCHER G, 1982, UNPUB ANN ISRAEL PHY
[2]  
ESSAM JW, 1980, REPTS PROGR PHYS, V43, P843
[3]   CRITICAL PROBABILITIES FOR CLUSTER SIZE AND PERCOLATION PROBLEMS [J].
FISHER, ME .
JOURNAL OF MATHEMATICAL PHYSICS, 1961, 2 (04) :620-&
[4]  
GAUNT DS, PREPRINT
[5]  
HEERMANN DW, 1981, Z PHYS B, V44, P333
[6]  
HERRMANN HJ, 1982, PREPRINT
[7]  
Manneville P., 1981, NUMERICAL METHODS ST
[8]  
NEWMAN CM, 1981, J STAT PHYS, V26, P613, DOI 10.1007/BF01011437
[9]   ORDER PROPAGATION NEAR THE PERCOLATION-THRESHOLD [J].
PIKE, R ;
STANLEY, HE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (05) :L169-L177
[10]   BOND PERCOLATION AND THE YANG-LEE EDGE SINGULARITY PROBLEMS IN 3 DIMENSIONS [J].
REEVE, JS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (09) :L521-L524