A NONLINEAR APPROXIMATION FOR VORTEX SHEET EVOLUTION AND SINGULARITY FORMATION

被引:14
作者
CAFLISCH, RE
SEMMES, S
机构
[1] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
[2] RICE UNIV,DEPT MATH,HOUSTON,TX 77251
来源
PHYSICA D | 1990年 / 41卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(90)90122-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The evolution of a vortex sheet in two-dimensional, incompressible, inviscid flow is governed by the integro-differential equation of Birkhoff-Rott. We derive a simple approximation for vortex sheet evolution, consisting of a system of four first-order differential equations. This approximate system has the advantage of involving only local operators. The errors in the approximation are shown to be relatively small even if the sheet has infinite curvature at a point. For the approximate equations, exact similarity solutions exhibiting singularity formation are constructed. © 1990.
引用
收藏
页码:197 / 207
页数:11
相关论文
共 17 条
[1]   SINGULAR SOLUTIONS AND ILL-POSEDNESS FOR THE EVOLUTION OF VORTEX SHEETS [J].
CAFLISCH, RE ;
ORELLANA, OF .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) :293-307
[2]   LONG-TIME EXISTENCE FOR A SLIGHTLY PERTURBED VORTEX SHEET [J].
CAFLISCH, RE ;
ORELLANA, OF .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (06) :807-838
[3]  
CAFLISCH RE, MULTIVALUED SOLUTION
[4]  
CAFLISCH RE, SINGULARITY FORMATIO
[5]  
DUCHON J, IN PRESS COMM PDE
[6]   DOUBLE-SCALE INVESTIGATION OF ASYMPTOTIC STRUCTURE OF ROLLED-UP VORTEX SHEETS [J].
GUIRAUD, JP ;
ZEYTOUNIAN, RK .
JOURNAL OF FLUID MECHANICS, 1977, 79 (JAN20) :93-112
[7]  
KAMBE T, COMMUNICATION
[8]   DESINGULARIZATION OF PERIODIC VORTEX SHEET ROLL-UP [J].
KRASNY, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1986, 65 (02) :292-313
[10]  
MERION DI, 1982, J FLUID MECH, V114, P283