STOCHASTIC-MODELS OF 2-DIMENSIONAL FRACTURE

被引:12
作者
AUSLOOS, M [1 ]
KOWALSKI, JM [1 ]
机构
[1] UNIV N TEXAS, DEPT PHYS, DENTON, TX 76203 USA
来源
PHYSICAL REVIEW B | 1992年 / 45卷 / 22期
关键词
D O I
10.1103/PhysRevB.45.12830
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two statistical models of (strictly two-dimensional) layer destruction are presented. The first is built as a strict percolation model with an added "conservation law" (conservation of mass) as physical constraint. The second allows for damped or limited fracture. Two successive fracture crack thresholds are considered. Percolation (i.e., fracture) probability and cluster distributions are studied by use of numerical simulations. Different fractal dimension, critical exponents for cluster distribution, and universality laws characterize both models.
引用
收藏
页码:12830 / 12833
页数:4
相关论文
共 20 条
[1]   FRACTAL GEOMETRIES IN DECAY MODELS [J].
BANAVAR, JR ;
MUTHUKUMAR, M ;
WILLEMSEN, JF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01) :61-65
[2]   THEORY OF 1ST-ORDER PHASE-TRANSITIONS [J].
BINDER, K .
REPORTS ON PROGRESS IN PHYSICS, 1987, 50 (07) :783-859
[3]  
BRADY RM, 1984, NATURE, V309, P225, DOI 10.1038/309225a0
[4]   DYNAMIC FAILURE OF SOLIDS [J].
CURRAN, DR ;
SEAMAN, L ;
SHOCKEY, DA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 147 (5-6) :253-388
[5]  
EDEN M, 1961, 4TH P BERK S MATH ST, V4
[7]   Molecular size distribution in three dimensional polymers. I. Gelation [J].
Flory, PJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1941, 63 :3083-3090
[8]  
GUNTON JD, 1983, INTRO THEORY METASTA
[9]   SCALING OF KINETICALLY GROWING CLUSTERS [J].
KOLB, M ;
BOTET, R ;
JULLIEN, R .
PHYSICAL REVIEW LETTERS, 1983, 51 (13) :1123-1126
[10]   THE FRACTAL NATURE OF FRACTURE [J].
LOUIS, E ;
GUINEA, F .
EUROPHYSICS LETTERS, 1987, 3 (08) :871-877