We develop elementary canonical methods for the quantization of Abelian and non-Abelian Chern-Simons actions, using well-known ideas in gauge theories and quantum gravity. Our approach does not involve choice of gauge or clever manipulations of functional integrals. When the spatial slice is a disc, it yields Witten's edge states carrying a representation of the Kac-Moody algebra. The canonical expressions for the generators of diffeomorphisms on the boundary of the disc are also found, and it is established that they are the Chern-Simons version of the Sugawara construction. This paper is a prelude to our future publications on edge states, sources, vertex operators, and their spin and statistics in 3D and 4D topological field theories.