M-FUNCTIONS AND PARALLEL ASYNCHRONOUS ALGORITHMS

被引:25
作者
ELBAZ, D
机构
[1] Cent Natl de la Recherche, Scientifique
关键词
D O I
10.1137/0727008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solution of nonlinear systems of equations Fx = z via parallel asynchronous algorithms is considered. It is shown that when F is continuous, off-diagonally antitone, and strictly diagonally isotone, then point asynchronous iterations converge monotonically to a solution of the problem from supersolutions and subsolutions. A global convergence result for asynchronous iterations, when F is a continuous, surjective M-function is also presented.
引用
收藏
页码:136 / 140
页数:5
相关论文
共 13 条
[1]   ASYNCHRONOUS ITERATIVE METHODS FOR MULTIPROCESSORS [J].
BAUDET, GM .
JOURNAL OF THE ACM, 1978, 25 (02) :226-244
[2]   DISTRIBUTED ASYNCHRONOUS RELAXATION METHODS FOR CONVEX NETWORK FLOW PROBLEMS [J].
BERTSEKAS, DP ;
ELBAZ, D .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (01) :74-85
[3]   DISTRIBUTED DYNAMIC-PROGRAMMING [J].
BERTSEKAS, DP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (03) :610-616
[4]  
Chazan D., 1969, LINEAR ALGEBRA APPL, V2, P199, DOI DOI 10.1016/0024-3795(69)90028-7
[5]  
Donnelly J. D. P., 1971, Linear Algebra and Its Applications, V4, P117, DOI 10.1016/0024-3795(71)90033-4
[6]  
MIELLOU J, 1986, PARALLEL ALGORITHMS
[7]  
Miellou J.-C., 1975, ESAIM-MATH MODEL NUM, V9, P55
[8]  
MIELLOU JC, 1975, CR ACAD SCI A MATH, V280, P233
[9]  
Ortega J.M., 1970, OCLC1154227410, Patent No. 1154227410
[10]  
RHEINBOLDT W, 1971, NUMERICAL SOLUTION P, P501