NUMERICAL-SOLUTION OF EIGENVALUE PROBLEMS FOR LINEAR BOUNDARY-VALUE ODES

被引:13
作者
BRAMLEY, S
DIECI, L
RUSSELL, RD
机构
[1] GEORGIA INST TECHNOL,SCH MATH,ATLANTA,GA 30332
[2] SIMON FRASER UNIV,DEPT MATH & STAT,BURNABY V5A 1S6,BC,CANADA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1016/0021-9991(91)90226-B
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Interrelationships between several popular approaches for solving eigenvalue problems for linear boundary value ODES are given. For linear eigenvalue problems, the popular methods can be interpreted in a common framework. This leads us to propose and justify alternative strategies. The choice of numerical methods used here is motivated by the desire to solve eigenvalue problems for stiff ODES. In particular, we consider a one-step global method (spline collocation) and two initial value methods (Riccati and continuous orthonormalization) to solve the Orr-Sommerfeld equation. A comparison of results for these methods, using various implementation strategies, is given. © 1991.
引用
收藏
页码:382 / 402
页数:21
相关论文
共 29 条
[1]  
Abramov A. A., 1961, USSR COMP MATH MATH, V1, P617, DOI [10.1016/0041-5553(63)90156-3, DOI 10.1016/0041-5553(63)90156-3]
[2]   COMPUTATION OF THE EIGENVALUES FOR PERTURBATIONS OF POISEUILLE FLOW USING A 2-POINT BOUNDARY-VALUE METHOD [J].
ACHE, GA .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (06) :1097-1112
[3]   SOLVING BOUNDARY-VALUE-PROBLEMS WITH A SPLINE-COLLOCATION CODE [J].
ASCHER, U .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 34 (03) :401-413
[4]  
ASCHER UM, 1988, NUMERICAL SOLUTION B, P135
[5]   THE FACTORIZATION METHOD FOR THE NUMERICAL-SOLUTION OF 2-POINT BOUNDARY-VALUE-PROBLEMS FOR LINEAR ODES [J].
BABUSKA, I ;
MAJER, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (06) :1301-1334
[6]   CONTINUATION AND COLLOCATION FOR PARAMETER-DEPENDENT BOUNDARY-VALUE PROBLEMS [J].
BADER, G ;
KUNKEL, P .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (01) :72-88
[7]  
Bailey P. B., 1978, ACM Transactions on Mathematical Software, V4, P193, DOI 10.1145/355791.355792
[8]  
BAKHVALOV NS, 1977, NUMERICAL METHODS, P601
[9]   A NUMERICAL STUDY OF TWO-DIMENSIONAL INSTABILITY-WAVE CONTROL BASED ON THE ORR-SOMMERFELD EQUATION [J].
BOWER, WW ;
KEGELMAN, JT ;
PAL, A ;
MEYER, GH .
PHYSICS OF FLUIDS, 1987, 30 (04) :998-1004
[10]   THE CALCULATION OF EIGENVALUES FOR THE STATIONARY PERTURBATION OF POISEUILLE FLOW USING INITIAL-VALUE METHODS [J].
BRAMLEY, JS ;
DENNIS, SCR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1984, 101 (01) :30-38