SYMBOLIC DYNAMICS APPROACH TO THE TWO-DIMENSIONAL CHAOS IN AREA-PRESERVING MAPS - A FRACTAL GEOMETRICAL MODEL

被引:27
作者
AIZAWA, Y
机构
来源
PROGRESS OF THEORETICAL PHYSICS | 1984年 / 71卷 / 06期
关键词
D O I
10.1143/PTP.71.1419
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1419 / 1421
页数:3
相关论文
共 10 条
[1]   ASYMPTOTICALLY NON-STATIONARY CHAOS [J].
AIZAWA, Y ;
KOHYAMA, T .
PROGRESS OF THEORETICAL PHYSICS, 1984, 71 (04) :847-850
[2]  
AIZAWA Y, 1984, CHAOS STATISTICAL ME
[3]  
AIZAWA Y, 1984, UNPUB PROG THEOR PHY
[4]  
BENSIMON D, 1984, PREPRINT
[5]   LONG-TIME CORRELATIONS IN THE STOCHASTIC REGIME [J].
KARNEY, CFF .
PHYSICA D, 1983, 8 (03) :360-380
[6]   NON-STATIONARITY OF CHAOTIC MOTIONS IN AN AREA PRESERVING MAPPING [J].
KOHYAMA, T .
PROGRESS OF THEORETICAL PHYSICS, 1984, 71 (05) :1104-1107
[7]   STOCHASTICITY AND TRANSPORT IN HAMILTONIAN-SYSTEMS [J].
MACKAY, RS ;
MEISS, JD ;
PERCIVAL, IC .
PHYSICAL REVIEW LETTERS, 1984, 52 (09) :697-700
[8]  
Mandelbrot B.B., 1982, FRACTAL GEOMETRY NAT, VVolume 1
[9]  
Melnikov V. K., 1963, T MOSCOW MATH SOC, V12, P1
[10]   HOMOCLINIC POINTS NEAR ELLIPTIC FIXED-POINTS [J].
ZEHNDER, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1973, 26 (02) :131-182