SMALL SOLUTIONS TO NONLINEAR SCHRODINGER-EQUATIONS

被引:213
作者
KENIG, CE
PONCE, G
VEGA, L
机构
[1] UNIV CALIF SANTA BARBARA,DEPT MATH,SANTA BARBARA,CA 93106
[2] UNIV AUTONOMA MADRID,FAC CIENCIAS,MADRID 28049,SPAIN
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1993年 / 10卷 / 03期
关键词
NONLINEAR SCHRODINGER EQUATIONS; SMOOTHING EFFECTS;
D O I
10.1016/S0294-1449(16)30213-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the initial value problem for the nonlinear Schrodinger equations partial derivative(t)u = iDELTAu + P(u, del(x), u, uBAR, del(x) uBAR), t is-an-element-of R, x is-an-element-of R(n), where P(.) is a polynomial having no constant or linear terms, is locally well posed for a class of ''small'' data u0. The main ingredients in the proof are new estimates describing the smoothing effect of Kato type for the group {e(itDELTA)}-infinity(infinity). This method extends to systems and other dispersive models.
引用
收藏
页码:255 / 288
页数:34
相关论文
共 40 条
[1]  
CARBERY A, 1985, N HOLLAND MATH STUDI, V3, P49
[2]  
CAZENAVE T, TEXTOS METODOS MATEM, V22
[3]  
CAZENAVE T, 1989, LECT MATH, V1392, P18
[4]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[5]  
COIFMAN RR, 1973, ASTERISQUE, V57
[6]  
Constantin P., 1988, J AM MATH SOC, V1, P413, DOI [10.2307/1990923, DOI 10.2307/1990923]
[7]  
DAHLBERG BEJ, 1982, LECT NOTES MATH, V908, P205
[8]  
Fukuda, 1980, FUNKC EKVACIOJ-SER I, V23, P259
[9]  
Fukuda, 1981, FUNKC EKVACIOJ-SER I, V24, P85
[10]  
GINIBRE J, 1985, J MATH PURE APPL, V64, P363