WEAK SOLUTIONS OF THE VLASOV-POISSON INITIAL-BOUNDARY VALUE-PROBLEM

被引:19
作者
ALEXANDRE, R
机构
[1] Ensta, Palaiseau
关键词
D O I
10.1002/mma.1670160807
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with existence results for a Vlasov-Poisson system, equipped with an absorbing-type law for the Vlasov equation and a Dirichlet-type boundary condition for the Poisson part. Using the ideas of Lions and Perthame [21], we prove the existence of a weak solution having good L(p) estimates for moment and electric field, by a good control on the higher moments of the initial data. As an application, we establish a homogenization result in the Hilbertian framework for this type of problem in non-homogeneous media, following the work by Alexandre and Hamdache [2] for general kinetic equations, and Cioranescu and Murat [11] for the Laplace problem.
引用
收藏
页码:587 / 607
页数:21
相关论文
共 30 条
[1]  
ALEXANDRE R, EFFECTIVE BEHAVIOUR
[2]  
ALEXANDRE R, IN PRESS ASYMPTOTIC
[3]  
ALEXANDRE R, 1991, NOTE CRAS, V313
[4]  
AMANN H, 1990, STUDIES MATH
[5]   LOCAL SOLUTIONS TO THE INITIAL AND INITIAL BOUNDARY-VALUE PROBLEM FOR THE BOLTZMANN-EQUATION WITH AN EXTERNAL FORCE .1. [J].
ASANO, K .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1984, 24 (02) :225-238
[6]  
BARDOS C, 1985, ANN I H POINCARE-AN, V2, P101
[7]  
BARDOS C, 1971, ANN SCI EC NORM SU 3, P185
[8]  
BARROSNETO J, 1966, PROBLEMES AUX LIMITE
[9]   GLOBAL WEAK SOLUTION OF THE VLASOV-POISSON SYSTEM FOR SMALL ELECTRONS MASS [J].
BOUCHUT, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1337-1365
[10]  
Brezis H., 1983, ANAL FONCTIONNELLE T