A METHOD FOR SOLVING CERTAIN QUADRATIC-PROGRAMMING PROBLEMS ARISING IN NONSMOOTH OPTIMIZATION

被引:52
作者
KIWIEL, KC
机构
[1] Systems Research Institute, Polish Academy of Sciences, Newelska 6, Warsaw,01-447, Poland
关键词
D O I
10.1093/imanum/6.2.137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quadratic programming
引用
收藏
页码:137 / 152
页数:16
相关论文
共 23 条
[1]   EQUIVALENCE OF SOME QUADRATIC-PROGRAMMING ALGORITHMS [J].
BEST, MJ .
MATHEMATICAL PROGRAMMING, 1984, 30 (01) :71-87
[2]  
BEST MJ, 1976, MRC1961 U WISC TECHN
[3]   REORTHOGONALIZATION AND STABLE ALGORITHMS FOR UPDATING GRAM-SCHMIDT QR FACTORIZATION [J].
DANIEL, JW ;
GRAGG, WB ;
KAUFMAN, L ;
STEWART, GW .
MATHEMATICS OF COMPUTATION, 1976, 30 (136) :772-795
[4]  
Fletcher R., 1981, PRACTICAL METHODS OP, V2
[5]  
Fletcher R., 1971, IMA J APPL MATH, V7, P76
[6]  
GILL PE, 1974, MATH COMPUT, V28, P505, DOI 10.1090/S0025-5718-1974-0343558-6
[7]   NUMERICALLY STABLE METHODS FOR QUADRATIC PROGRAMMING [J].
GILL, PE ;
MURRAY, W .
MATHEMATICAL PROGRAMMING, 1978, 14 (03) :349-372
[8]  
Gill PE, 1981, PRACTICAL OPTIMIZATI
[9]   AN AGGREGATE SUBGRADIENT METHOD FOR NONSMOOTH CONVEX MINIMIZATION [J].
KIWIEL, KC .
MATHEMATICAL PROGRAMMING, 1983, 27 (03) :320-341
[10]  
KIWIEL KC, 1985, LECTURE NOTES MATH, V1133