LISTERIA-MONOCYTOGENES CAN GROW IN MACROPHAGES WITHOUT THE AID OF PROTEINS INDUCED BY ENVIRONMENTAL STRESSES

被引:55
作者
HANAWA, T
YAMAMOTO, T
KAMIYA, S
机构
关键词
D O I
10.1128/IAI.63.12.4595-4599.1995
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Listeria monocytogenes is a facultative intracellular pathogen which is able to survive and grow within phagocytic cells. Some facultative intracellular bacteria have been shown to respond to the hostile environment within phagocytic cells by producing a set of stress proteins. Since L. monocytogenes has a mechanism for intracellular survival that is distinct from those of other bacteria, we studied the phenotypic response of the bacterium to phagocytosis by macrophages. After phagocytosis oft. monocytogenes EGD by J774-1 macrophage cells, the microorganism rapidly increased in numbers about 20 fold during an incubation period of 5 h. In this phase of phagocytosis, the selective induction of 32 proteins was observed by two-dimensional gel electrophoresis. The responses to the environmental stresses of heat and hydrogen peroxide were also studied, and it was found that 14 heat shock proteins and 13 oxidative stress proteins were induced. Five of the induced proteins were common to both heat and oxidative stresses. By amino acid sequencing analysis, homologs of DnaK and GroEL were confirmed among the heat shock proteins. A comparison of the autoradiograms of the two-dimensional gels revealed that none of these stress proteins were among the proteins induced by L. monocytogenes within the macrophages. This behavior is entirely different from that shown by other facultative intracellular pathogens. Stress proteins known to be induced by environmental stresses were absent in intracellularly groan L. monocytogenes in the present study. This absence could be due to the mechanism by which the microorganisms rapidly escape from this stressful environment at a very early phase of phagocytosis.
引用
收藏
页码:4595 / 4599
页数:5
相关论文
共 42 条
[1]   PHENOTYPIC MODULATION BY LEGIONELLA-PNEUMOPHILA UPON INFECTION OF MACROPHAGES [J].
ABUKWAIK, Y ;
EISENSTEIN, BI ;
ENGLEBERG, NC .
INFECTION AND IMMUNITY, 1993, 61 (04) :1320-1329
[2]   RESPONSE OF CULTURED MACROPHAGES TO MYCOBACTERIUM-TUBERCULOSIS, WITH OBSERVATIONS ON FUSION OF LYSOSOMES WITH PHAGOSOMES [J].
ARMSTRONG, JA ;
HART, PD .
JOURNAL OF EXPERIMENTAL MEDICINE, 1971, 134 (03) :713-+
[3]   TRANSCRIPTIONAL REGULATION OF PRFA AND PRFA-REGULATED VIRULENCE GENES IN LISTERIA-MONOCYTOGENES [J].
BOHNE, J ;
SOKOLOVIC, Z ;
GOEBEL, W .
MOLECULAR MICROBIOLOGY, 1994, 11 (06) :1141-1150
[4]   INDUCTION OF SALMONELLA STRESS PROTEINS UPON INFECTION OF MACROPHAGES [J].
BUCHMEIER, NA ;
HEFFRON, F .
SCIENCE, 1990, 248 (4956) :730-732
[5]   POSITIVE CONTROL OF A REGULON FOR DEFENSES AGAINST OXIDATIVE STRESS AND SOME HEAT-SHOCK PROTEINS IN SALMONELLA-TYPHIMURIUM [J].
CHRISTMAN, MF ;
MORGAN, RW ;
JACOBSON, FS ;
AMES, BN .
CELL, 1985, 41 (03) :753-762
[6]   LISTERIA-MONOCYTOGENES MOVES RAPIDLY THROUGH THE HOST-CELL CYTOPLASM BY INDUCING DIRECTIONAL ACTIN ASSEMBLY [J].
DABIRI, GA ;
SANGER, JM ;
PORTNOY, DA ;
SOUTHWICK, FS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (16) :6068-6072
[7]   FATE OF LISTERIA-MONOCYTOGENES IN MURINE MACROPHAGES - EVIDENCE FOR SIMULTANEOUS KILLING AND SURVIVAL OF INTRACELLULAR BACTERIA [J].
DECHASTELLIER, C ;
BERCHE, P .
INFECTION AND IMMUNITY, 1994, 62 (02) :543-553
[8]   A NOVEL BACTERIAL VIRULENCE GENE IN LISTERIA-MONOCYTOGENES REQUIRED FOR HOST-CELL MICROFILAMENT INTERACTION WITH HOMOLOGY TO THE PROLINE-RICH REGION OF VINCULIN [J].
DOMANN, E ;
WEHLAND, J ;
ROHDE, M ;
PISTOR, S ;
HARTL, M ;
GOEBEL, W ;
LEIMEISTERWACHTER, M ;
WUENSCHER, M ;
CHAKRABORTY, T .
EMBO JOURNAL, 1992, 11 (05) :1981-1990
[9]   MOLECULAR-CLONING, SEQUENCING, AND IDENTIFICATION OF A METALLOPROTEASE GENE FROM LISTERIA-MONOCYTOGENES THAT IS SPECIES-SPECIFIC AND PHYSICALLY LINKED TO THE LISTERIOLYSIN GENE [J].
DOMANN, E ;
LEIMEISTERWACHTER, M ;
GOEBEL, W ;
CHAKRABORTY, T .
INFECTION AND IMMUNITY, 1991, 59 (01) :65-72
[10]   INVITRO MODEL OF PENETRATION AND INTRACELLULAR GROWTH OF LISTERIA-MONOCYTOGENES IN THE HUMAN ENTEROCYTE-LIKE CELL-LINE CACO-2 [J].
GAILLARD, JL ;
BERCHE, P ;
MOUNIER, J ;
RICHARD, S ;
SANSONETTI, P .
INFECTION AND IMMUNITY, 1987, 55 (11) :2822-2829