INTERDIFFUSION IN MULTICOMPONENT SOLID-SOLUTIONS - THE MATHEMATICAL-MODEL FOR THIN-FILMS

被引:23
作者
DANIELEWSKI, M
FILIPEK, R
HOLLY, K
BOZEK, B
机构
[1] UNIV MIN & MET KRAKOW,INST MATH,PL-30059 KRAKOW,POLAND
[2] JAGIELLONIAN UNIV,INST MATH,PL-30059 KRAKOW,POLAND
来源
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH | 1994年 / 145卷 / 02期
关键词
D O I
10.1002/pssa.2211450214
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A nonhomogeneous boundary value problem for interdiffusion in a solid multicomponent one-dimensional mixture showing constant concentration is analyzed. Darken's concept of separation of diffusional and drift flows is applied for the general case of diffusional transport in an r-component compound. The equations of local mass conservation, Darken's flux formula, the postulate of constant molar volume of the mixture, and the initial and boundary conditions form a self-consistent interdiffusion problem (the quantitative dynamical model). This problem is analyzed in open as well as closed systems and when the component diffusivities vary with composition. The variational form of the interdiffusion problem and the criterion of parabolicity are presented. Results of numerical simulation of interdiffusion in binary and ternary solid solutions of finite dimensions are presented. The development of the ''uphill diffusion'' concentration profile in the ternary alloy is displayed.
引用
收藏
页码:339 / 350
页数:12
相关论文
共 24 条
[1]  
[Anonymous], 1987, DIFFUSION CONDENSED
[2]  
ARCHBOLD TF, 1965, T METALL SOC AIME, V233, P839
[3]  
BALUFFI RW, 1960, ACTA METALL, V8, P871
[4]  
DANIELEWSKI M, 1994, THIN FILMS, P636
[5]  
DANIELEWSKI M, IN PRESS POLISH J CH
[6]  
DARKEN LS, 1948, T AM I MIN MET ENG, V175, P184
[7]  
DAYANANDA MA, 1991, DIFFUSION METALS ALL
[8]  
DAYANANDA MA, 1992, DIFFUSION MULTICOMPO
[9]  
Duh J. G., 1985, Diffusion and Defect Data, V39, P1
[10]   SELF-DIFFUSION IN GOLD [J].
GILDER, HM ;
LAZARUS, D .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1965, 26 (12) :2081-&