GEOMETRIC DESIGN TECHNIQUES FOR OBSERVERS IN SINGULAR SYSTEMS

被引:41
作者
LEWIS, FL
机构
[1] School of Electrical Engineering, Georgia Institute of Technology, Atlanta
基金
美国国家科学基金会;
关键词
geometric theory; invariance; Lyapunov equations; observers; Singular systems;
D O I
10.1016/0005-1098(90)90138-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present geometric design techniques for observer design in generalized state-space or singular systems. The unknown-input-conditioned invariant subspaces are defined for singular systems, and are related to the solution of a generalized Lyapunov equation. The approach emphasizes solution procedures based on the Lyapunov equation and a singular system structure algorithm. This paper extends the singular system observer theory both by providing a geometric basis for it and showing the best that may be accomplished if the system is not observable. © 1990.
引用
收藏
页码:411 / 415
页数:5
相关论文
共 16 条
[1]  
Basile G., 1969, Journal of Optimization Theory and Applications, V3, P306, DOI 10.1007/BF00931370
[2]   CONTROLLABILITY, OBSERVABILITY, AND DUALITY IN SINGULAR SYSTEMS [J].
COBB, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (12) :1076-1082
[3]  
Gantmacher, 1959, THEORY MATRICES, P125
[4]  
Kang H., 1988, J KOREAN I ELECT ENG, V25, P123
[5]   A SURVEY OF LINEAR SINGULAR SYSTEMS [J].
LEWIS, FL .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1986, 5 (01) :3-36
[6]  
LEWIS FL, 1989, IN PRESS IEEE T AUT
[7]   TIME-INVARIANT DESCRIPTOR SYSTEMS [J].
LUENBERGER, DG .
AUTOMATICA, 1978, 14 (05) :473-480
[8]  
MALABRE M, 1987, DEC P IEEE C DEC CON
[10]  
OZCALDIRAN K, 1985, THESIS GEORGIA I TEC