NON-KOLMOGOROV SCALING EXPONENTS AND THE GEOMETRY OF HIGH REYNOLDS-NUMBER TURBULENCE

被引:13
作者
PROCACCIA, I [1 ]
CONSTANTIN, P [1 ]
机构
[1] UNIV CHICAGO,DEPT MATH,CHICAGO,IL 60637
关键词
D O I
10.1103/PhysRevLett.70.3416
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Scaling behavior in turbulence is studied on the basis of its relation to the wrinkling, or fractalization, of the graph of the velocity field in 3 + 3 dimensions. We propose a novel mechanism for deviations from the Kolmogorov exponents, which is realized if the fine structure of turbulence tends locally towards two dimensionality. It is argued that some of the popular fractal and multifractal models of intermittency in turbulence are not consistent with fluid mechanics, and miss some essential physics.
引用
收藏
页码:3416 / 3419
页数:4
相关论文
共 19 条
[1]  
[Anonymous], 1941, P USSR ACAD SCI, DOI DOI 10.1098/RSPA.1991.0075
[2]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89
[3]   AN INEQUALITY CONCERNING THE PRODUCTION OF VORTICITY IN ISOTROPIC TURBULENCE [J].
BETCHOV, R .
JOURNAL OF FLUID MECHANICS, 1956, 1 (05) :497-504
[4]  
CONSTANTIN P, IN PRESS PHYS REV E
[5]  
Falconer, 1985, GEOMETRY FRACTAL SET
[6]  
Federer H., 1969, GRUNDLEHREN MATH WIS
[7]   SIMPLE DYNAMICAL MODEL OF INTERMITTENT FULLY DEVELOPED TURBULENCE [J].
FRISCH, U ;
SULEM, PL ;
NELKIN, M .
JOURNAL OF FLUID MECHANICS, 1978, 87 (AUG) :719-736
[8]  
Frish U., 1985, TURBULENCE PREDICTAB, P84
[10]   STRAINED SPIRAL VORTEX MODEL FOR TURBULENT FINE-STRUCTURE [J].
LUNDGREN, TS .
PHYSICS OF FLUIDS, 1982, 25 (12) :2193-2203