THE CONSTRUCTION OF NONCOMMUTATIVE MANIFOLDS USING COHERENT STATES

被引:77
作者
GROSSE, H [1 ]
PRESNAJDER, P [1 ]
机构
[1] UNIV VIENNA,INST THEORET PHYS,BOLTZMANNGASSE 5,A-1090 VIENNA,AUSTRIA
关键词
D O I
10.1007/BF00745155
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe the construction of noncommutative manifolds, which are the noncommutative analogs of homogeneous spaces using coherent states. In the conunutative limit, we obtain standard manifolds. Applications to the Fuzzy-sphere and to the Fuzzy hyperboloid are discussed in more detail.
引用
收藏
页码:239 / 250
页数:12
相关论文
共 19 条
[1]  
[Anonymous], GENERALIZED COHERENT
[2]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[3]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[4]   PATH-INTEGRALS AND SUPERCOHERENT STATES [J].
CHAICHIAN, M ;
ELLINAS, D ;
PRESNAJDER, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3381-3391
[5]  
Connes A., 1990, GEOMETRIE NONCOMMUTA
[6]  
CONNES A, 1986, PUBL MATH IHES, V62, P257
[7]  
DUBOISVIOLETTE M, 1988, CR ACAD SCI I-MATH, V307, P403
[8]   SUPERCOHERENT STATES [J].
FATYGA, BW ;
KOSTELECKY, VA ;
NIETO, MM ;
TRUAX, DR .
PHYSICAL REVIEW D, 1991, 43 (04) :1403-1412
[9]  
Grabowski J., 1992, Journal of Geometry and Physics, V9, P45, DOI 10.1016/0393-0440(92)90025-V
[10]   A NONCOMMUTATIVE VERSION OF THE SCHWINGER MODEL [J].
GROSSE, H ;
MADORE, J .
PHYSICS LETTERS B, 1992, 283 (3-4) :218-222