INTERPRETING THE KOHONEN SELF-ORGANIZING FEATURE MAP USING CONTIGUITY-CONSTRAINED CLUSTERING

被引:77
作者
MURTAGH, F [1 ]
机构
[1] EUROPEAN SPACE AGCY,DEPT SPACE SCI,DIV ASTROPHYS,F-75738 PARIS 15,FRANCE
关键词
CLUSTER ANALYSIS; NEURAL NETWORKS; HIERARCHICAL CLUSTERING; REGIONALIZATION; SEGMENTATION; DATA ANALYSIS; IMAGE PROCESSING;
D O I
10.1016/0167-8655(94)00113-H
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An interpretation phase is proposed, to complement usage of the Kohonen self-organizing feature map (SOFM) method. This segments the SOFM output, using an agglomerative contiguity-constrained clustering method. We discuss why such a clustering method, which respects contiguity information, should be used. The contiguity-constrained clustering method implemented uses array operations as far as possible, and is thus quite efficient. An application to an astronomical catalog of about a quarter million objects is presented.
引用
收藏
页码:399 / 408
页数:10
相关论文
共 24 条